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ABSTRACT

This work develops a versatile approach to discover anomalies
in operational data for nominal (i.e., non-parametric) subsys-
tem event signals using unsupervised Deep Learning tech-
niques. Firstly, it builds a neural convolutional framework
to extract both intrasubsystem and intersubsystem patterns.
This is done by applying banks of voxel filters on the charted
data. Secondly, it generalizes the learned embedded regu-
larity of a Variational Autoencoder manifold by merging la-
tent space-overlapping deviations with non-overlapping syn-
thetic irregularities. Contingencies like novel data, model
drift, etc., are therefore seamlessly managed by the proposed
data-augmented approach. Finally, it creates a smooth diag-
nosis probabilistic function on the ensuing low-dimensional
distributed representation. The resulting enhanced solution
warrants analytically strong tools for a critical industrial en-
vironment. It also facilitates its hierarchical integrability, and
provides visually interpretable insights of the degraded condi-
tion hazard to increase the confidence in its predictions. This
strategy has been validated with eight pairwise-interrelated
subsystems from high-speed trains. Its outcome also leads to
further reliable explainability from a causal perspective.

1. INTRODUCTION

Anomalies are signs of a strange system condition that inher-
ently represent a flaw, a degraded state, a fault, or a failure,
and discovering them is of utmost importance to ensure the
correct operation of a physical machine. The detection of
anomalies using subsystem-event data is regarded as a tradi-
tional problem in the Prognostics and Health Management
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(PHM) community because it has a broad applicability but
it still needs a definitive approach. This problem is assumed
to be tractable using reams of data through a statistics-based
perspective. However, there’s no canonical approach to effec-
tively process nominal events like these records. Specifically,
there’s a lack of consensus and methodology on algorithm
selection in different scenarios (Huang, B., Di, Y., Jin, C., and
Lee, J., 2017).

Subsystem event data are generally available through time-
stamped nominal variables where typically no single message
is decisive to raise an alarm. Thus, the density of information
is low, along with the sparsity of this representation. These
characteristics pose challenging encoding questions to the
PHM engineers who are responsible for designing rules and
procedures to diagnose anomalies in this environment. Such
nominal event data have been commonly tackled as discrete-
valued variables using counts of their occurrences in a sliding-
time window, followed by a supervised learning scheme such
as a Support Vector Machine or a Random Forest (Sammouri,
W., Côme, E., Oukhellou, L., Aknin, P., and Fonlladosa, C.-E.,
2014). After the Deep Learning revolution (Sejnowski, T. J.,
2018), though, the recent state of the art in Anomaly Detection
for PHM is dominated by the successive transformation of
representations using Autoencoders, which are unsupervised
neural networks that exploit the autoassociations in the data
through a dense and efficient low-dimensional information-
compressed embedded space (Fink, O., Wang, Q., Svensén,
M., Dersin, P., Lee, W.-J., and Ducoffe, M., 2020).

Different solutions have been developed to address specific
problems. For example, to counter the adverse effect of faulty
data shortage and be robust to different operating conditions,
an Extreme Learning Machine-based Autoencoder has been
used to blend data from different sources conserving their
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homothety, and then its embedding has been used to classify
the anomaly (Michau, G., and Fink, O., 2019). Similarly,
for such open-set problems where the knowledge of all fault
types may be incomplete at training time, the manifold of
an adjusted Variational Autoencoders has been used (Arias
Chao, M., Adey, B. T., and Fink, O., 2019). Also in this
topology-preserving similarity line, further tweaks on the ob-
jective criteria to obtain a regular latent space have led to the
consideration of Self-Organizing Maps within a Deep Autoen-
coder (Forest, F., Lebbah, M., Azzag, H., and Lacaille, J.,
2019). Following this need for smooth behaviors, a recurrent
Autoencoder has also been used to get continuous probabilities
on machine health condition instead of the sudden evolution
that is directly experienced when machines degrade (Shahid,
N., and Ghosh, A., 2019). In light of all these approaches,
it is clear that Autoencoders have generally been used with
success as feature extractors and anomaly detectors for diverse
applications (Farzad, A., and Gulliver, A., 2020; Dangut, M.
D., Skaf, Z., and Jennions, I., 2020). Particularly, one of the
most promising environments for this technique is found when
the input data gets represented as an image and a convolu-
tional Autoencoder architecture is deployed (Eid, A., Clerc,
G., Mansouri, B., and Roux, S., 2021; Rodriguez Garcia, G.,
Michau, G., Ducoffe, M., Sen Gupta, J., and Fink, O., 2021).

This work unifies the former successful ideas under the same
framework, and builds a novel value-added solution for main-
tainers to detect rolling-stock anomalies in a high-speed rail-
way environment using only operational data. To this end,
a generative approach is considered as its main component,
being the most expressive probabilistic technique to model
the complexity of the problem at hand. Moreover, this model
naturally enables the production of synthetic data to face the
shortage of anomalies that is typically found in a real-world
commercial transport service. And finally, observing the in-
dustrial requirement of an interpretable safety-critical PHM
system and its connection to visualization (Elattar, H. M.,
Elminir, H. K., and Riad, A. M., 2016), hazard maps are ex-
tracted to build trust with the customers and increase their
confidence in this innovative approach.

The article is organized as follows: Section 2 describes the
logged multi-subsystem operational event dataset and the
framework to process it based on a Hierarchical Variational
Autoencoder. Section 3 shows the diagnosis results obtained
in terms of Anomaly Detection (i.e., a classification objective).
Section 4 discusses the general interpretability insights that
may be extracted, which are mostly based on causality, and
Section 5 concludes the work with some future avenues of
improvement.

2. MATERIALS AND METHOD

This section describes the data that have been used to learn
and exploit the anomaly model, the strategy to obtain this

knowledge, and the measurable key performance indicators
to quantify the expected detection success in the field. Addi-
tionally, the ISO 13374 standard has been observed to design
the proposed solution (ISO, 2003). What follows is a brief
description of the main modules that have been implemented:

Data Acquisition The operational events have been logged
using the Train Control Management System (TCMS),
which is the on-board computer that sniffs the backbone
network of the train.

Data Manipulation The subsystem event-data have been
binarized into a logic-like waveform and arranged onto a
charted geometric space.

State Detection The data-space has been transformed with
filters and modeled using a probabilistic generative ap-
proach with latent variables. Additionally, synthetic data
have been produced to enrich the model and generalize
the diagnosis solution, which has been devised as a di-
chotomous classifier.

Advisory Generation Hazard maps have been produced to
provide visual feedback of the degradation zones that are
likely to generate anomalies.

2.1. Subsystem Event Dataset

While the trains are in commercial service, their on-board
subsystems generate messages about their operation according
to some predefined rules driven by specific events designed
by their suppliers and manufacturers. These messages are
then logged by the TCMS, which is continuously monitoring
them. In this work, a dump of subsystem logs (syslogs) for a
whole year has been collected from a high-speed rolling stock
platform. What follows are some descriptive statistics of these
records to better understand the nature of these longitudinal
data.

The dataset amounts to 4.8M events distributed across the
multiple train units in the fleet throughout the year, see Fig-
ure 1. There are two main modes in this distribution: trains
that generated around 70k events, and trains that generated
around 110k events. This may be due to different mission
profiles to balance the load of the service.

These subsystem event data are essentially nominal, i.e., non-
parametric. They are defined by a specific subsystem/train
identification code and the timestamp of occurrence. Addition-
ally, there are some context variables like the GPS location
that may be useful to display operational details, and eventu-
ally to help fathom the potential reasons that may explain a
given event pattern. For example, Figure 2 displays the evolu-
tion of monthly event counts showing seasonal patterns: this
function is flat around 9k average unit events for half of the
year, and plunges in the spring and the fall. Figure 3 displays
the evolution of weekly events, showing that the service peak
is on Thursday (busy business day) while the trough is on
Sunday (late weekend). Finally, Figure 4 displays the event
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Figure 1. Histogram of the total event count per train unit,
showing two main modes as humps in the kernel density esti-
mation.

Figure 2. Monthly evolution of event counts.

evolution regarding the train location on the line, showing that
the capital is the area where the majority of the events are
generated, and the counts decrease exponentially on the more
distant destinations.

Regarding the specific subsystems that issue messages into
the network, Figure 5 displays their total arrangement. Ad-
ditionally, for each of them, a power law defines its internal
distribution of events, see Figure 6 for the Traction subsystem
shown as an example. Note that there exists some functional
spillover among the subsystems, for instance, between the
Traction and the Brake. The rolling stock platform of use here
equips a blended braking system by which the traction motor
is both used to put the train into motion and also to stop it.
This explains why braking events can be found in the Traction
subsystem stream, e.g., “Traction/Brake Train Line Fault”,
“Regenerative Brake Defect”, etc. This mixed nature of event
occurrence justifies the importance of building a framework
able to blend data from different sources. The next section

Figure 3. Weekly evolution of event counts.

Figure 4. Evolution of event counts given the location.

describes how this point has been particularly considered in
this research.

2.2. Anomaly Detection Framework

This section describes the solution that has been designed to
detect anomalies in operational data using nominal subsystem
events. Figure 7 shows its modular framework, where its
functional blocks are shown in boldface, and the details of
their implementation are further described in the following
subsections.

2.2.1. Event-Voxel Data Fusion

In a PHM environment, the data that can reliably contain
information about the failure of a machine is typically scarce.
Therefore, all the data sources that may be within reach are
advised to be collected and exploited, especially if a statistics-
based approach is targeted (Gelman, A., 2021). However, the
workload for data selection and filtering is significant with
heterogeneous and complex datasets, especially in inference-

3



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Figure 5. Ranked total event counts given the subsystems.

based classification problems like Anomaly Detection (Huang,
B., Di, Y., Jin, C., and Lee, J., 2017). In light of this scenario,
there is a need to develop an automatic approach to represent
and fuse different data from distinct origins (Hu, X., Eklund,
N., and Goebel, K., 2007), i.e., concurrent intrasubsystem as
well as intersubsystem sources. The proposed process to attain
this goal is described as follows.

Initially, the data from the timestamped subsystem events
are massively processed using regular expressions to extract
the key-value pairs and conflate similar logs into matching
clusters (Du, M., Li, F., Zheng, G., and Srikumar, V., 2017).
Additionally, they are segmented into train units and 24-hour
time sets that align with the commercial transport schedule,
yielding around 20k instances within the dataset. Also, the
coordination with the maintenance activities runs at the day-by-
day level, thus the decisions are made by the Operations Team
within this time frame. Finally, the resulting sets undergo the
subsequent series of dimensional (D) transformations:

1D: Nominal Event to Parametric Time Series The nature
of the nominal event data is first transformed into a time
series of binary parametric variables using a spreading
filter (Hu, X., Eklund, N., and Goebel, K., 2007). The
resulting time-dilated data resemble the pulse signals of
a logic circuit that can be further analyzed because they
represent useful information for health management such
as the time between events (Xie, Y. J., Tsui, K. L., Xie,
M., and Goh, T. N., 2010). The resolution in time adopted
in this work is of 30 minutes, i.e., 48 time slices per day.

2D: Intrasubsystem Diversity To illustrate the information
that a single subsystem generates by itself, e.g., see Fig-
ure 6, a bidimensional image-like representation is pro-
posed. Such charted data organization can display com-
plex patterns such as correlations, recursive behaviors,
or spectral components (Rodriguez Garcia, G., Michau,

Figure 6. Histogram of the top 30 frequency-ranked events for
the Traction subsystem.

G., Ducoffe, M., Sen Gupta, J., and Fink, O., 2021; Eid,
A., Clerc, G., Mansouri, B., and Roux, S., 2021). In
this work, the 30 most frequent events per subsystem are
considered. To see how this representation is effective to
display different degradation conditions, Figure 8 shows
a Normal instance chart of Traction subsystem behavior.
In this representation, only the most frequent events at
the top of the rank get generated sparsely. In contrast,
Figure 9 shows an Anomaly instance chart. In this case,
many events get generated concurrently, also in the infre-
quent event space. These two plots show the two extremes
of the degradation spectrum. For predictive maintenance
purposes, the interesting analysis lies in the transition
phase, especially around the incipient point of failure.

3D: Intersubsystem Diversity The last step in the represen-
tation of the multiple subsystem data adds a new dimen-
sion where different charts may be stacked. This approach
clearly shows the concurrent nature of event observation
among the different generators. In this work, pairwise-
interrelated subsystems such as the Traction and Brake
example are considered.

In the proposed volumetric representation, the smallest quan-
tum of data is therefore given by a voxel of time, intrasubsys-
tem and intersubsystem binary event occurrence. These voxels
are then arranged into a tensor of size (30,48,2) that is suitable
for exploitation with a Deep Learning model, as is described
in the next section, to extract the relevant dynamic (i.e., time
evolving) data characteristics between the thirty most frequent
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Figure 7. Diagram of the proposed Anomaly Detection framework. Plot (a) depicts the expected distribution of the Reconstruction
Error. Plot (b) depicts the expected representation on the augmented latent space. This design is mostly focused on training the
solution. Regarding its industrial deployment, the data path for its straightforward diagnosis evaluation is displayed as a thick
dashed line connecting the manifold in the Variational Autoencoder with the Multilayer Perceptron to estimate the probability of
anomaly.

Figure 8. Chart representation of a Normal condition pattern.

events for two related subsystems (e.g., the Traction and the
Brake).

2.2.2. Denoising Variational Autoencoder

A Variational Autoencoder (VAE) is a probabilistic approach
that is used to represent the process of data generation. The
VAE provides a principled framework for learning deep latent-
variable encoding models Q(z), and the corresponding decod-
ing inference models (Kingma, D. P., and Welling, M., 2019).
This method is a key enabler to implement the proposed in-

Figure 9. Chart representation of an Anomaly condition pat-
tern.

tegrated approach working on unsupervised categorical data
X like regular operational events (Hancock, J. T., and Khosh-
goftaar, T. M., 2020). At its core, the VAE is a variational
Bayesian method (Doersch, C., 2016), and given that the
Bayesian theory rests on an axiomatic foundation, the VAE is
guaranteed to have quantitative coherence that other methods
do not have (Duda, R. O., Hart, P. E., and Stork, D. G., 2001).
Moreover, adding random noise and regarding a denoising
learning schedule is helpful to secure a good generalization
performance of the model and enable its reuse for pretraining
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on downstream tasks (Erhan, D., Manzagol, P.-A., Bengio, Y.,
Bengio, S., and Vincent, P., 2009).

The VAE fundamentally maximizes the probability of the data
under the entire generative process, i.e., through the compres-
sion in the embedded latent space. Its objective function is
the Evidence Lower Bound (ELBO), see Eq. (1), where KL

is the Kullback-Leibler divergence. The three main factors
that define the implementation of the ELBO for the proposed
Denoising VAE are listed as follows:

• Encoding/Decoding Functions Q: Convolutional Neural
Networks

• Latent Space Manifold z: Multivariate Normal Distribu-
tion

• Reconstruction Error/Loss: Binary Cross-Entropy

ELBO(X,Q) =Ez⇠Q[logP (X|z)]�KL[Q(z)kP (z|X)]

=Ez⇠Q[logP (X|z)]�
Ez⇠Q[logQ(z)� logP (z|X)]

(1)

Regarding the encoding, the representation of the nominal
event data X into 3D binary voxels arranged into tensors natu-
rally leads to their effective exploitation through a deep convo-
lutional neural framework. Expressive complex functions in
Q are to be learned with the embedded non-linearities, which
are introduced by the Rectified Linear Unit (ReLU) activation
function, and the weight-sharing strategy of its filters help the
resulting network to not overfit the data. Moreover, events are
well-aligned at similar scales, which results in less variation
in the critical data (Kanazawa, A., Sharma, A., and Jacobs, D.,
2014). Finally, introducing random noise at this stage (e.g.,
through a few voxel value flips) plays an important role in
achieving good generalization performance: it makes nearby
data points in the low dimensional manifold robust against
the presence of small deviations in the high dimensional ob-
servation space (Vincent, P., Larochelle, H., Bengio, Y., and
Manzagol, P. A., 2008). This variation could be physically
interpreted as the thermal noise in the sensors that eventually
generate the events in the subsystems.

Regarding the learned embedding, each dimension of the latent
random variable z is assumed to be independent of each other
(i.e., they are factorized) and modeled by a univariate Gaussian
distribution whose parameters (i.e., the mean and the variance)
are obtained by the non-linear neural encoding function Q. As
a result, the latent space displays enough smooth regularity to
be considered as a manifold. Specifically, a manifold is a topo-
logical space that is locally Euclidean (Bredon, G. E., 1995).
This low-dimensional geometric analysis makes it computa-
tionally advantageous compared to the high dimensional input.
Additionally, this latent distributed representation, which is

set to 2 dimensions for representational purposes, is amenable
to the visual interpretation of the hazardous anomaly zones.
This is extremely useful because the similarity in high di-
mensional spaces is meaningless (Fefferman, C., Mitter, S.,
and Narayanan, H., 2016). Moreover, limiting the expressive-
ness of this bottleneck layer helps to compress the data and
thus retain its most meaningful attributes, which is likely to
be helpful for the generalization of the solution and prevent
overfitting. Finally, given that stochasticity is inherent in the
sampling process on the manifold (here this can be taken for a
sort of injected latent noise), further improved performance is
expected (Im, D. J., Ahn, S., Memisevic, R., and Bengio, Y.,
2017). The source of this variation could be physically found
in the seed of the random number generator, e.g., a timer.

Regarding the objective loss function, most PHM approaches
dealing with parametric data assume Gaussian or Laplacian er-
ror likelihood distributions and thus consider Mean Squared or
Mean Absolute Error (MAE) metrics to train and evaluate their
performance (Rodriguez Garcia, G., Michau, G., Ducoffe, M.,
Sen Gupta, J., and Fink, O., 2021). MAE is especially robust
to outliers in time series data (Lai, G., Chang, W.-C., Yang,
Y., and Liu, H., 2018), thus helping in the modeling of the
regular operational condition. Nevertheless, for the current
event-based scenario, interpreting binary data as probabilistic
targets and introducing classification metrics such as the Bi-
nary Cross Entropy leads to faster training as well as improved
generalization (Simard, P. Y., Steinkraus, D., and Platt, J. C.,
2003). This implicitly assumes that the reconstruction error
in the ELBO is Bernoulli distributed (Sicks, R., Korn, R., and
Schwaar, S., 2020).

Finally, to complete the description of the VAE proposed in
this work, Table 1 shows some further details about the internal
structure and parameters for the Encoder part (note that the
Decoder simply mirrors and unwinds this given configuration).
In total, the VAE comprises over 120k trainable parameters.

2.2.3. Synthetic Data Augmentation

To enhance the out-of-distribution generalizability and the
robustness of the proposed solution, the available data is aug-
mented. This gives rise to a set of synthetic instances that
are expected to go beyond the limited set of observed anoma-
lies. This strategy is increasingly gaining adoption in the
industry (Strickland, E., 2022), where the assets are typically
overmaintained to minimize the risk of a service-affecting
failure.

In the previous section, the management of noise was de-
scribed (along with the introduction of a denoising strategy) for
performance improvement purposes (Vincent, P., Larochelle,
H., Lajoie, I., Bengio, Y., and Manzagol, P.-A., 2010). Addi-
tionally, the data is here transformed by considering shifts in
time, also known as translations. Convolutional Neural Net-
works are not naturally invariant to translations, but they can
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Table 1. VAE Encoder structure parameter chart.

Layer Name Type Filter Stride Amount Activation Output Shape Parameters
Event Voxel Input Linear (30, 48, 2) 0
Shallow Receptive Conv2D (3,3) 2 32 ReLU (15, 24, 32) 608
Deep Receptive Conv2D (3,3) 3 64 ReLU (5, 8, 64) 18496
Sparse Vector Flatten (2560) 0
Dense Vector Dense ReLU (16) 40976
Latent Mean Dense Linear (2) 34
Latent Variance Dense Linear (2) 34

acquire this feature if such transformation is embedded in the
data strategy (Biscione, V., and Bowers, J. S., 2021), especially
when no Pooling layers are introduced in the pipeline (Chaman,
A., and Dokmanic, I., 2021), as is the case here. Eventually,
the data are separated into Normal and Anomaly groups ac-
cording to their amount of reconstruction error, which is a
reliable indicator to detect anomalies when its value is over the
99th percentile (Rodriguez Garcia, G., Michau, G., Ducoffe,
M., Sen Gupta, J., and Fink, O., 2021). What follows is the
description of the synthetic generation process based on inter-
polation and extrapolation driven by this anomalous condition
distinction, all of which take place in the latent space manifold
that has been designed to exhibit enough regularity to perform
these operations.

The few instances that are regarded as anomalous, i.e., the
ones that display a large reconstruction error, comprise the
minority class as they lie on the long tail of the loss distribu-
tion. This data imbalance can cause learning problems and
result in skewed outcomes. To counter this adverse situation, a
combination of oversampling for the minority (i.e., Anomaly)
class and undersampling for the majority (i.e., Normal) class
achieves better classifier performance (Chawla, N. V., and
Bowyer, K. W., 2002). Specifically, the method for oversam-
pling the minority class involves linearly interpolating among
the nearest neighbors, which thus creates similar synthetic
examples.

Finally, generative models like the VAE give rise to “fantasy”
data whose probability distribution is the same as that of the ob-
served data (Bishop, C. M., 2006). This principle is exploited
here outside the main cluster of Normal data as a grid of non-
overlapping instances deployed on the latent space (Huh, D.,
2011). In PHM, particularly, this extrapolation-based approach
was originally inspired by the natural immune system (Qiu,
H., Eklund, N., Hu, X., Yan, W., and Iyer, N., 2008), and thus
there is sensible evidence to believe in its effectiveness.

2.2.4. Hierarchical Probabilistic Detection

Beyond the plain discriminative function introduced by the
amount of reconstruction error, providing a fine-grained as-
sessment of the stage of degradation is advantageous to avoid a
sudden evolution from Normal to Anomaly conditions (Shahid,
N., and Ghosh, A., 2019). To this end, a Multilayer Percep-

tron (MLP) neural network is hierarchically introduced on the
manifold z to directly estimate the probability of Anomaly
pA, see Eq. (2) for a matrix notation of this classification func-
tion, where W are the input (I) and hidden (H) transformation
matrices, and g is a non-linearity bounded between 0 and 1
such as the logistic sigmoid function. The computed prob-
ability enables considering decision theory criteria such as
the management of risk driven by the reject option, and also
facilitates its combination within more integrated probabilistic
solutions (Bishop, C. M., 2006).

pA(z) = g(WH(g(WIz))) (2)

Well-regularized MLP’s significantly outperform recent state-
of-the-art specialized architectures (Kadra, A., Lindauer, M.,
Hutter, F., and Grabocka, J., 2021). Functionally, the MLP
performs a non-linear logistic regression that learns the tessel-
lation of the latent space and decouples the two degradation
conditions. This objective is attained by the contrastive char-
acter of the cross-entropy loss (Khosla, P., Teterwak, P., Wang,
C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., and
Krishnan, D., 2020), which is fueled by the thresholded recon-
struction error that is incorporated explicitly as a binary target
within a supervised training process (Kingma, D. P., Rezende,
D. J., Mohamed, S., and Welling, M., 2014).

2.2.5. Confidence Index

To close the design of an industrial system, indicating the
amount of trust in the system’s outcome is useful for the
consumer of this information. This goal is related to the esti-
mation of the uncertainty in the given solution. In this paper,
the smoothness of the probabilistic anomaly detection func-
tion pA is exploited as follows: the Confidence Index (CI) is
ultimately described by the rate of its change. This inherently
implies that the transition zones are unstable and uncertain,
while the plateaus are stable and certain. Given that the detec-
tion function depends on the distributed representation of the
bidimensional manifold z (that is locally Euclidean), the mag-
nitude of its vector derivative r = (@/@z1, @/@z2) is what
is taken for reference to indicate confidence in the prediction,
see Eq. (3). Finally, a unitary bound on the resulting CI is
introduced for normalized advisory purposes.
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CI(z) = 1.0�min(krpA(z)k, 1.0) (3)

2.3. Performance Evaluation

In most real-world settings, the probability of an anomaly is
expected to be only slightly greater than zero (Wu, R., and
Keogh, E., 2021). In this sense, the purpose of this section is
to validate that the proposed probabilistic approach effectively
models the degradation of the rolling stock using nominal
subsystem events. As a result, the probability of Anomaly
must be strictly higher for the degraded condition than for the
Normal (i.e., regular) condition. To do so, a balanced sample
of validation data is obtained after the discrimination deter-
mined by the amount of reconstruction error, see Section 2.2.3.
10% of the anomalous instances are included in this hold-out
validation sample, which amounts to 120 examples in total.

The key performance indicators for this evaluation are driven
by the probability of Anomaly pA for both the Normal and the
Anomaly evaluation sample. Gaussianity in the distributions
is assumed for statistical convenience, because the probability
is a bounded quantity between 0 and 1. Also, the customary
minimum of 30 instances to reliably estimate the two statisti-
cal moments of this distribution type (i.e., the mean and the
variance) are guaranteed in the evaluation sample (Lejeune,
M., 2010). The significance of their mean average differences
is determined by the Student’s t-test (Gosset, W. S., 1908).
Further classification evaluation can be easily attained by in-
troducing a threshold to discretize the probabilistic decision,
which may also help to manage the potential reject option.
The specific value of this threshold is typically set at 0.5, i.e.,
in the middle of its range. The Precision P and Recall R
measures that succeed consider the impact of False Positive
FP and False Negative FN errors respectively with regards
to the True Positive TP successes, which are all to be found
in the confusion matrix, see Eq. (4).

P =
TP

TP + FP
R =

TP

TP + FN
(4)

Finally, the limitations of the proposed VAE-based Anomaly
Detection approach define the epistemic uncertainty in the
model. To determine the range of their impact on the di-
agnosis performance, the following evaluation environments
are considered (for practical experimental purposes, only the
subsystems that generate most of the events are taken into
consideration in this work):

• Locomotion: Traction + Brake
• Indoors: Heating, Ventilation, and Air Conditioning

(HVAC) + Doors
• Bogie: Tilting System + Wheel Slip Protection (WSP)
• Energy: Transformer (Transf.) + Auxiliary Converter

(Aux. Conv.)

Figure 10. Histogram of the Binary Cross Entropy (BCE)
Reconstruction Error along with the 99th percentile threshold.
The plot roughly matches the expected distribution of this
Loss, see Figure 7(a).

3. RESULTS

This section presents the results obtained with the proposed
Anomaly Detection approach based on operational subsystem
event data. Figure 10 shows an example of the the distribution
of degradation provided by the histogram of the Reconstruc-
tion Error/Loss. The mass of this distribution is largely skewed
toward the lower end, and it decays exponentially as the in-
stances become increasingly anomalous (this is the expected
behavior at the fleet level). A statistical threshold over the 99th
percentile is used to separate the Normal from the Anomaly
conditions. This criterion works well in the real world to spot
actual anomalies (Rodriguez Garcia, G., Michau, G., Ducoffe,
M., Sen Gupta, J., and Fink, O., 2021). Moreover, on this
distribution there seem to be two modes of behavior, a small
one that aligns with the zero origin, and a large one that is
somewhat shifted. This may be associated with the different
regimes of the trains, e.g., low-speed maneuvering close to the
depot/station (i.e., the low volume of records) and high-speed
intercity transit (i.e., the majority of the records).

Delving deep into the internal operation of the system, Fig-
ure 11 shows the tessellation of the bidimensional latent man-
ifold. In this hazard map, the decision boundary (i.e., pA =
0.5) wraps the instances that are deemed to be Normal, and
leaves out the ones that belong to the Anomaly category or
the synthetic outliers. Additionally, Figure 12 displays the
confidence in the diagnostic, which essentially depicts the
silhouette of the Normal region. As expected, the transition
zone is the most uncertain point.

Finally, Table 2 shows the performance of the Anomaly Detec-
tion approach for each of the evaluation environments. In all
cases, the average probability of abnormality for the Anomaly
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Figure 11. Tessellation of the latent manifold on the learned
bidimensional embedding z = (z1, z2). The probabilistic
anomaly decision boundary is shown at pA(z) = 0.5, which
is the random guess on a dichotomic classification problem.
Note that while the latent space is continuous, the evaluation
points are necessarily discrete, and a visually dense grid has
been used here to display the Normal closed region. While
a continuous function approximating this boundary is likely
to be faithful to reality, only the spots that have been actually
evaluated are represented. The plot matches the expected
distribution of this embedded space, see Figure 7(b).

condition is significantly greater than for the Normal regu-
lar case. The resulting range of classification performance
indicators lies around 80%, which is similar to a historical
baseline obtained on comparable data (Sammouri, W., Côme,
E., Oukhellou, L., Aknin, P., and Fonlladosa, C.-E., 2014).
See Figure 13 for the impact of the decision criterion on the
types of error displayed by the system. A smaller threshold
value drives the system toward conservatism (i.e., high Recall
at the expense of false alarms), while a greater value yields
an eager behavior (i.e., high Precision at the risk of missing a
failure).

4. DISCUSSION

This section addresses some typical qualms about time-series
based anomaly detection, and provides insights into its inter-
pretability from a causal perspective.

4.1. Reliability

Conventional performance indicators for anomaly detection
methods based on time-series data can sometimes be mislead-
ing (Wu, R., and Keogh, E., 2021). This happens, for example,
when the signals are so trivial that a single descriptive statistic
such as the mean or the standard deviation suffices to explain
them, or where the anomalies are directly found at the end
of the data sequence (e.g., on run-to-failure tests). None of
these situations apply to the scenario tackled in this work. In

Figure 12. Confidence Index shown on the latent manifold
related to Figure 11.

Figure 13. Precision and Recall curves driven by the sensitivity
of the Decision Threshold. Accuracy is also shown here only
for reference as the total rate of correct classifications.

hindsight, though, simplifications to the proposed approach
could now be found, but these seem unlikely to be have been
devised initially with the data only.

Perhaps one aspect worth discussing here is the noise in the la-
bels, which is a pervasive problem in the field because manual
expert-labeling of each instance at a large scale is not feasi-
ble (Kim, S., Choi, K., Choi, H.-S., Lee, B., and Yoon, S.,
2022). This work, albeit framed in an unsupervised learning
setting, relies on the signal reconstruction error as an imperfect
surrogate for the ground truth, which is used to estimate the
probability of Anomaly with the cross-entropy loss. Here, the
99th percentile loss drives this discriminative labeling crite-
rion, motivated by its reported success to identify anomalies
in the real world (Rodriguez Garcia, G., Michau, G., Ducoffe,
M., Sen Gupta, J., and Fink, O., 2021). However, if this high
value is reduced, the detection results are likely to be differ-
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Table 2. Detection performance driven by the probability of Anomaly, that is applied to the Normal (N) and Anomaly (A)
validation instances, taking into account their environments. Statistical mean µ and standard deviation � are computed, along
with the p-value of the significance t-test, and the Precision/Recall values at the decision boundary of pA = 0.5.

Environment pA(N)[µ/�] pA(A)[µ/�] p-value Precision Recall
Locomotion 0.18/0.19 0.78/0.25 6e-28 0.92 0.83
Indoors 0.21/0.29 0.70/0.28 1e-15 0.82 0.71
Bogie 0.39/0.18 0.66/0.25 7e-10 0.72 0.60
Energy 0.23/0.20 0.76/0.34 7e-18 0.91 0.72

ent, perhaps affecting the capacity of the system to deal with
instances increasingly similar to regular data.

In such a hybrid learning environment, if the training data
is “corrupted” with this pseudo-label, deep models such as
the VAE tend to overfit the noise, thereby achieving poor
generalization performance (Feng, L., Shu, S., Lin, Z., Lv, F.,
Li, L., and An, B., 2020). This effect can be observed as a
condition overlap in the latent space, see Figure 11, although
this region also shows a lower Confidence Index, see Figure 12.
Moreover, this Bernoulli-distributed error makes it difficult
to identify out-of-distribution instances when there are lots
of zeroes in the data (Yong, B. X., Pearce, T., and Brintrup,
A., 2020), as is the case with the sparse subsystem events, see
Figures 8 and 9. Nevertheless, when the ReLU is the only
non-linearity in the system (check Table 1), the loss curvature
is immune to class-dependent label noise (Patrini, G., Rozza,
A., Menon, A., Nock, R., and Qu, L., 2017), which increases
the confidence in the proposed approach.

4.2. Causal Explainability

Section 2.1 briefly described the blended braking system and
the impact that one subsystem has on another, i.e., Brake on
Traction. The Locomotion environment is very illustrative and
further interesting insights may be extracted. This section is
dedicated to providing such explanations, especially form the
perspective of the inferred causality (Zaman, N., Apostolou,
E., Li, Y., and Oister, K., 2022).

Causal inference is here motivated by the Kullback-Leibler
divergence, which is used in the objective function of the
VAE, see Section 2.2.2. It turns out that this value is a suit-
able measure of causal influence (Janzing, D., Balduzzi, D.,
Grosse-Wentrup, M., and Schölkopf, B., 2013). Therefore, the
question naturally arises: has the VAE automatically learned
any cause-effect relationships?

4.2.1. Graphical Causal Structure

In this work each dimension of the latent space is assumed
to be an independent Gaussian, see Section 2.2.2 for further
details. This design choice creates a disentangled representa-
tion that is not necessarily causal, it has been introduced only
to allow a more complex joint distribution to be constructed
from simpler components (Bishop, C. M., 2006). To progress

toward a semantically interpretable system, causally disentan-
gled latent variables are needed. These can in fact be obtained
from VAE models using an embedded layer to transform inde-
pendent exogenous factors (i.e., the root causes) into causal
endogenous ones (i.e., their effects) that correspond to causally
related concepts in the data (Yang, M., Liu, F., Chen, Z., Shen,
X., Hao, J., and Wang, J., 2020). However, the data must
already contain sample-wise causal labels to learn this richer
representation. In the absence of such cues, this section uses
a Causal Discovery approach to create a potential graphical
description of the inherent causal structure.

Considering that the available event subsystem data can be
framed as a multivariate time-series of binary variables, causal-
ity is expected to be observed as the precedence of events. To
capture their causal links, the Peter-Clark (PC) algorithm is
proposed (Spirtes, P., Glymour, C., and Scheines, R., 2001).
PC is a causal network learning algorithm that copes well
with high dimensionality and can often also identify the di-
rection of contemporaneous links (Runge, J., Bathiany, S.,
Bollt, E. et al., 2019). It is one of the oldest algorithms that
is consistent under i.i.d. sampling assuming no latent con-
founders, i.e., all relevant variables need to be observed in the
data (Glymour, C., Zhang, K., and Spirtes, P., 2019). The PC
algorithm starts by building a fully-meshed graph with all the
variables, and then evaluates the strength of the associations
by testing their conditional independence using the time-series
data. Eventually, it removes those edges that display zero
partial correlation. Finally, it applies a series of heuristics to
orient the links that remain giving them a causal direction, and
the resulting graphical structure is provided.

In this analysis, the top 10 frequency-ranked events are con-
sidered, 5 for each subsystem in the Locomotion environment,
see Table 3. Event simultaneity is expected, especially in the
presence of anomalies. Figure 14 shows the generated causal
graphical structure.

Based on these results, the subsystem interrelation between the
Brake and the Traction is mostly evident, e.g., rheostat over
temperature (T1) is caused by a failure on the blended braking
system (B4 and B5) and on the fan of the heat exchanger
(T4). In some cases, though, these associations are not so
clear-cut. For example, the 5th Traction event (i.e., T5), which
specifically refers to a “Traction/Brake fault”, is not caused by
any of the most frequent Brake events according to the criteria
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Table 3. Description of the top-ranked subsystem events in the Locomotion environment.

Event Rank Traction (T) Brake (B)
1 Rheo Over Temperature Brake Supply Pressure High
2 Traction Boost Selected Parking Brake Applied Pressure Switch
3 Traction Eco Selected Main Line Pressure High
4 Heat Exchanger Fan Fault Application Error 1 (blending)
5 Traction/Brake Train Line Fault PWM Signal 2 Dyn Brake Out of range

Figure 14. Causal graph for the Locomotion environment, i.e.,
including the Traction (T) and Brake (B) subsystems. Node
name code: {Subsystem}{Rank}. See Table 3 for further
details. Arrows indicate event association from cause to effect.

of the PC Causal Discovery algorithm.

What is more, the graph shows some bidirected edges, e.g.,
among B1, B2, and B3. This is likely to indicate the presence
of an unobserved confounder, which reveals a limitation of
the PC approach: since its outcome is a Markov equivalence
class, there is likely to be another (possibly better) graphical
representation that explains the same data. In fact, direct PC
application is not advised for the time series case, despite its
apparently good results, and other more involved methods
using more powerful statistical tests with time lags should
be explored on top of it (Runge, J., Nowack, P., Kretschmer,
M., Flaxman, S., and Sejdinovic, D., 2019). Additionally,
the subject matter experts should elucidate these effects and
resolve the causal directionality conflict. However, the PC
algorithm serves well to make the point of the discussion, and
its result constitutes a solid basis for further research.

4.2.2. Sensitivity Analysis

In the context of this work, the sensitivity analysis of interest
determines how the probability of Anomaly is affected by
changes in the subsystem event data. This may help quantify
the maximum bias that is reasonably expected for unmeasured
confounding (Hernán, M. A., and Robins, J. M., 2020), which

Figure 15. Sensitivity analysis on the Locomotion environ-
ment. See Table 3 for further details. Assuming Normality for
the day-level average distributions, bar heights indicate their
mean values, and whiskers indicate one standard deviation.
All the visually imperceptible bars actually have a negligible
probability in the order of 10�4.

was detected by the former Causal Discovery approach (also
note that the VAE model implicitly assumed that the events
are independent). Here, a time-averaged analysis at the day
level of the top-ranking Locomotion events is performed, see
Figure 15.

This sensitivity study shows that the impact of the Traction
is barely noticeable compared to the impact of the Brake,
especially regarding its three most frequent events, which are
also the ones subject to an unobserved confounder. Taking
all this extracted information into account, it could be stated
that whenever an anomalous situation occurs and a Traction
event is generated, the actual root cause is likely to be found
on the Brake. However, causality at the model level cannot be
extrapolated to the real world (Molnar, C., 2019). It is a global
interpretation of the available observational (i.e., ambiguous)
data. Unless further expert criteria are additionally considered,
these results may ultimately be driven by correlation, as this
point cannot yet be fully rejected. The contrapositive argument
that no-correlation implies no-causation could explain some of
these results, especially for the 4th and 5th event ranks, which
display a null risk of Anomaly. In the end, both correlation
and convolution are linear shift-invariant operators (Szeliski,
R., 2022), and since the latter defines the structure of the VAE,
it could also help elucidate this behavior.
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5. CONCLUSION

The strategy to detect anomalies using only operational data
through a Hierarchical Variational Autoencoder has provided
good results on par with previous experience. Moreover, the
fine-grained probabilistic diagnosis has enabled 1) tackling
the gradual degradation process that is observed at the fleet
level, 2) building interpretable visual insights through hazard
maps, and 3) assessing the confidence in the predictions.

Although the focus of the paper is on subsystem event streams
as a challenging signal source, the method can be readily
transferred to other domains (including other types of trains)
using parametric data typically used in PHM: the convolutional
structure can be directly applied to vibration, current, pictures,
etc. What is more, all these environments may be ultimately
merged into an ensemble towards a complete holistic solution
where, for instance, the events of the Brake subsystem could
be complemented with the shudder of a brake disk (e.g., from
an accelerometer) and the thickness of the brake pads (e.g.,
from a camera).

This work has relied mainly on the management of random
noise as a means to increase the robustness of the solution.
However, interesting improvement directions may be devised
when considering alternative loss functions in the VAE that
are robust to outliers such as the Tsallis entropy (Sârbu, S.,
and Malagò, L., 2019), the coupled entropy (Cao, S., Li,
J., Nelson, K.P., and Kon, M.A., 2022), the tamed cross-
entropy (Martinez, M., and Stiefelhagen, R., 2018), and the
hyperbolic cosine loss (Chen, P., Chen, G., and Zhang, S.,
2019).

Moreover, this work has focused on providing a probabilistic
function for the degradation of the assets, and the confidence
in its outcome has been resolved using the magnitude of its
gradient. Perhaps it could be more reliable to quantify the
uncertainty (i.e., the variability) in the prediction using dropout
in the MLP or introducing some fluctuations in its input latent
representation, thus keeping a probabilistic description of the
confidence. This is regarded as interesting future work.

Finally, the representation of causality is also a topic that de-
serves further attention (Schölkopf, B., Locatello, F., Bauer,
S., Ke, N. R., Kalchbrenner, N., Goyal, A., and Bengio, Y.,
2021). The Discussion has already revealed some straightfor-
ward insights, but a deeper understanding is necessary to make
stronger conclusions. This paves the way for the consideration
of Deep Learning to directly manage the construction of a
Structural Causal Model from first principles (Zec̆ević, M.,
Dhami, D. S., Velic̆ković, P., and Kersting, K., 2021), and be
able to identify the cause-effect relationships that describe the
degradation processes in full detail.
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