
Magnus: Mouse Advanced GNU Speech

A computer mouse pointer controller
through voice commands

Author : Alexandre Trilla Castelló

Advisor : Dr. Francesc Aĺıas Pujol

Servei de Tecnologies per l’Aprenentatge i el Coneixement (TAC)
Departament d’Educació
Generalitat de Catalunya

Departament de Tecnologies Mèdia (DTM)
Enginyeria i Arquitectura La Salle

Universitat Ramon Llull

2008

Per a tu, Gemma

Abstract

This Master’s Thesis deals with the development of an application to con-
trol the mouse pointer and keyboard arrows of a PC through Catalan voice
commands, also documenting the technical aspects involved with the digital
signal processing field as well as with the IT field.

The application is programmed in Java and distributed with four flavors,
from the source code distribution aimed at developers to making use of the
Java Web Start technology clearly aimed at end users. One of the interesting
goals of the project is to provide a degree of oral accessibility for people with
reduced mobility.

Abstract

Aquest Projecte Final de Carrera tracta el desenvolupament d’una apli-
cació per controlar el punter del ratoĺı i les fletxes del teclat d’un ordinador
personal a través de comandes de veu en català, aix́ı com també la docu-
mentació dels aspectes tècnics relacionats amb el camp del processat digital
del senyal i del camp de les TIC.

L’aplicació és programada en Java i distribüıda de quatre maneres, des
de la distribució del codi font orientada a desenvolupadors fins a l’ús de la
tecnologia de Java Web Start clarament orientada als usuaris finals. Un dels
punts interessants del projecte és el poder lliurar un cert grau d’accessibilitat
oral a persones amb mobilitat redüıda.

Abstract

Este Proyecto Final de Carrera trata el desarrollo de una aplicación para
controlar el puntero del ratón y las flechas del teclado de un ordenador per-
sonal a través de comandos de voz en catalán, aśı como también la docu-
mentación de los aspectos técnicos relacionados con el campo del procesado
digital del señal y del campo de las TIC.

La aplicación está programada en Java y distribuida de cuatro formas, des
de la distribución del código fuente orientada a desarrolladores hasta el uso
de la tecnoloǵıa de Java Web Start claramente orientada a usuarios finales.
Uno de los puntos interesantes del proyecto es el poder proporcionar un cierto
grado de accesibilidad oral a personas con mobilidad reducida.

Summary

Chapter 1 has an approach to the speech recognition field, describing some
of the most usual terms used.

Chapter 2 deals with the formal mathematical methods and models that
desribe the creation and functioning of a Hidden Markov Models based speech
recognition system.

Chapter 3 describes Sphinx-4, a HMM-based speech recognition engine
written in Java that has been taken as base system for Magnus.

Chapter 4 shows a speech enhancement method that improves the intel-
ligibility of a speech signal by raising the power of the higher parts of the
frequential spectre.

Chapter 5 describes the architecture and main components of Magnus, as
well as the various means of distribution.

Chapter 6 brings the theorical concepts shown in Chapter 4 to practice,
according to the design specifications of Sphinx-4.

Chapter 7 details the instrumentation tools available to score the perfor-
mance of the system.

Chapter 8 reviews the rate used to measure the quality of the system,
explains the preparation process of the audio files workbench and shows the
results of the recognitions.

Chapter 9 summarizes the various conclusions that derive from the de-
velopment of this Master’s Thesis and proposes some future lines for the
improvement of the application.

Acknowledgements

Although I’m the one that ran the way doing this Master’s Thesis, there’s
a lot of people that were there to show me the right direction, with whom
I’m deeply grateful.

I would like to especially give my thanks to ...

... to Francesc Busquets, my boss at the Department of Education, for
the good taste that remains after being under his leadership at the IT unit
for education, for the essential lessons in Java, and most important of all,
for the chance for letting me produce this thesis on my scholarship at the
Department.

... to Dr. Francesc Aĺıas, my thesis advisor at the university of La Salle,
for the excellent guidance, willing attitude and motivation throughout all the
project. As I once said to him, if my academic career goes beyond a Master’s
Degree I would definitely want him to be my advisor again.

... to my parents, Josep Llúıs and Maria José, for giving me the opportu-
nity to study Telecommunications Engineering at La Salle in Barcelona, and
thus allowing me to get to this Academic Degree.

... to my girlfriend, Gemma, and her father, Carlos, for the hours spent at
the desk doing this thesis, for the patience, advice and faith in that what I
was doing would be worth it.

... to Alfred Gaza, a former work colleague and mentor, for the present
feeling of applying the technical knowledge to the development of a wealthier
society.

... to all the people that have to any extent contributed to this project,
from the interest that Joan de Gràcia, one of the main Linkat GNU/Linux
developers and promoters, has always shown in the project to the last of the

people that have offered the beauty of their voices to the goodness of the
speech recognition science. Indeed, thank you.

Alexandre Trilla
September 2008

Preface

As it can be seen presently, computers lead the latest revolution of
mankind. From time to time new designs and technologies appear in or-
der to make machines compute faster, more precise and cheaper. Personal
computers inhabit almost every home in our world, we are very used to work-
ing with them, and many initiatives and projects are on the run to spread
this habit to every person on Earth, whether they are aging people reluctant
to the use of computers or people living in countries in development.

It can be stated, without a doubt, that computers have helped society in
many ways, from easing the drag of doing repetitive work to the advances
in science and security that enables us to have a pretty comfortable life.
But all these brilliant progresses usually have a common feature: they are
all programmed to actuate always in the same way. A microwave oven will
always heat water the same way, as well as a washing machine will always
do the washing-up in a similar manner. There can be excellent systems,
that may contemplate a wide range of variables which respond perfectly to
previous studies made by the designers and scientists, but their responses are
still unknown for a supposedly different situation never seen before. What
would happen if we tried to heat a calculator? An iron pair of scissors?
Would it be dangerous? Could the machine avoid the danger? Possibly.
And what if we tried to wash our laptop? We’d better not have a try unless
we want to get rid of the computer in a very stupid way.

This is basically described as sequential programming. It’s a nice and
intuitive approach to the reasonable answer for the many possible situations.
The microwave oven works excellent with a soup and the washing machine
with the dishes and cutlery.

Preface v

The more possible environments, the more lines in the program to deal
with them all. But don’t leave the door open to new experiments, they are
all bound to fail terribly. The examples written before were just as useless
and idiot as we could imagine. Nevertheless, the machines exemplified did
their job very well, and so our lives easier. But when it comes to more
complex goals, such as robot guidance, face identification, or in our case, (i.e.
emulating human capabilities) speech recognition, we have to leave the idea
of foreseeing all the possible situations so that we could provide the correct
answer. We must enable the machine, let’s say the computer in charge of the
task, to have enough paths to select the most appropriate solution according
to a set of rules that would have been learned, not programmed, previously.
In other words, we’d have to give some sort of intelligence to the machine so
that it would learn from our teaching. Just like the way we humans do.

For accomplishing this mission, a couple of very important changes must
be done. Since we are not programmed in a sequential way (or we are not
programmed at all, but we leave this question for philosophers), we will al-
ways do more or less the same task with slightly different changes, according
to our mood, our haste, our attention or the need of doing something else in
the meantime. So, one first important attribute that characterizes mankind
is the ability of doing different chores in parallel. If one thread can hold
a concrete weight, let’s notice the improvement with many threads work-
ing at the same time. This aspect must be reflected on computers as well.
Parallelism is one of the main issues that are being developed nowadays.
Technology astonishes the world with the multi core designs of the state-of-
the-art microprocessors, that double twice the power of their older brothers.
It is then a very interesting point to bear in mind in order to make powerful
applications.

On the other hand, every field in science must be thoroughly studied if
useful results are wanted, and automatic speech recognition is no exception.
So apart from the advantages that the parallel programming offer, it is the
specific methods and processes of the field that must be implemented by this
technique.

From now on, the Master’s Thesis will expose the development of Magnus:
Mouse Advanced GNU Speech, an application that will use an ASR (Auto-

Preface vi

matic Speech Recognition) engine to control the mouse pointer on the screen,
so that it can emulate a hand. This project is intended to provide oral acces-
sibility for people with reduced mobility. It has been programmed with Java,
so that it doesn’t require a concrete platform (operating system) to work, so
it will do on Windows as well as on GNU/Linux. Moreover, in order to make
it accessible to the largest possible community groups, it has been adapted to
the Java Web Start technology, which implies no installation process, making
it easier for the users to run. Java Web Start (JWS) will do all the work. If
the application is run from the Internet for the first time, JWS will install it
automatically, making such process transparent to the final user, and launch
it afterwards. If it is then launched, either from the Internet or from the
local user’s computer, JWS will check that no newer release is available, or
will download it automatically if so, and will launch it finally.

Magnus has been developed for the IT Projects Unit for the Educational
Sector from the Department of Education of the Government of Catalonia,
the Generalitat de Catalunya, with the collaboration of Enginyeria i Arqui-
tectura La Salle (Universitat Ramon Llull), with the wish that it is most
useful to society.

Motivation, objectives and hypothesis

The motivation that exists in the development of this project comes from
the satisfaction of doing, as long as oneself feels able to do so, something good
to help society. The author, being a Telecommunications and Electronics
Engineer, wants to apply such and interesting and appealing technology, to
the needs of disabled people, so that his Master’s Thesis may help to ease
the way to new technologies.

There is the extra motivation in developing the application for such an
important institution, the Department of Education of the Government of
Catalonia, thus establishing a link between the scientific environment of
the author’s university, La Salle, and the Department of Education, in a
so widespread and important programming language, Java, and the joy of
contributing to the free software community.

Preface vii

The main purpose of this thesis is to provide a clear and friendly, when
possible, guide or manual, to create the proposed accessibility application,
through the theory involved in Speech Recognition processes and the praxis
development in a computerized environment.

And although it may be blurry to extract a hypothesis from such a practice
project, the author has chosen to put it the following way:

“Starting from scratch, I am able to look for all the precise documenta-
tion on Automatic Speech Recognition, understand it and apply it to create
a Java application to provide oral accessibility for people with reduced mobil-
ity, writing a complete manual with the needed and improved information to
enable the project’s continuity and making it all free software and free docu-
mentation on the Internet under a General Public compatible License and a
Creative Commons licence respectively.”

Contents

Preface iv
Motivation, objectives and hypothesis vi

Contents viii

List of Tables xii

List of Figures xiii

I Theory 1

1 Approach to Speech Recognition 2
1.1 Overview . 3
1.2 Intention . 3
1.3 Articulation and resonance . 4
1.4 Hearing . 4
1.5 Features Extraction . 5
1.6 Microphone . 6
1.7 Digitization . 7
1.8 Spectrogram . 7
1.9 Phonemes . 8
1.10 Fluent speech . 9
1.11 Understanding . 10
1.12 Response . 10
1.13 Techniques . 11

Contents ix

2 HMM-based Speech Recognition 12
2.1 Maximum Likelihood . 12
2.2 Basis of Hidden Markov Models 14

2.2.1 Overview . 15
2.3 Problems associated with HMM 17
2.4 Solutions to the Three Problems 18

2.4.1 Forward-Backward algorithm 18
2.4.2 Viterbi algorithm . 18
2.4.3 Baum-Welch algorithm 20

2.5 Modeling the Distributions of Sequences of Features Vectors . 20
2.6 Key Decoding Issues . 26

2.6.1 Active Lists and Beamwidths 27
2.6.2 Language Weight . 27
2.6.3 Word Insertion Penalty 29
2.6.4 Performance Evaluation 29
2.6.5 Livemode Decoding . 30

3 Sphinx-4: A Java ASR engine 31
3.1 Introduction . 31
3.2 Framework – High Level Architecture 34
3.3 FrontEnd . 36

3.3.1 microphone . 37
3.3.2 speechClassifier . 38
3.3.3 speechMarker . 39
3.3.4 nonSpeechDataFilter 39
3.3.5 preemphasizer . 41
3.3.6 windower . 42
3.3.7 fft (Fast Fourier Transform) 44
3.3.8 melFilterBank . 44
3.3.9 dct . 46
3.3.10 liveCMN . 46
3.3.11 featureExtraction . 47

3.4 Linguist . 48
3.4.1 LanguageModel . 49
3.4.2 Dictionary . 49
3.4.3 AcousticModel . 50
3.4.4 SearchGraph . 52

3.5 Decoder . 53

Contents x

4 Speech Enhancement 56
4.1 Introduction . 56
4.2 Speech intelligibility enhancement system 58
4.3 Real-Time Implementation . 61

II Practice 62

5 Architecture, main components and software distributions 63
5.1 Architecture . 63
5.2 Main components . 64

5.2.1 User interface . 64
5.2.2 Sphinx-4 interaction 66
5.2.3 Sphinx-4 configuration 67

5.3 Software distributions . 70
5.3.1 Source code distribution 70
5.3.2 Development distribution 72
5.3.3 Binary distribution . 73
5.3.4 Java Web Start distribution 73

6 Speech Enhancement Modules 75
6.1 Overview . 75
6.2 Tunable high-pass shelving filter 76

6.2.1 Level detection . 77
6.2.2 APF parameter estimation 77
6.2.3 High-pass shelving filter 81

6.3 Excess boost reducer . 82
6.4 De-esser . 83

6.4.1 Side-chain . 83
6.4.2 Low-pass shelving filter 85

6.5 Speech enhancement results 86

7 Regression Tests 89
7.1 Setting up a regression test . 89

7.1.1 Input audio files . 90
7.1.2 Batch file . 90
7.1.3 Acoustic model and dictionary 91
7.1.4 Configuration file . 92

Contents xi

7.1.5 Grammar file . 93
7.1.6 Batch-mode recognizer 94

7.2 Instrumentation tools . 95
7.2.1 Logger . 95
7.2.2 Accuracy tracker . 96
7.2.3 Speed tracker . 98
7.2.4 Memory tracker . 99

8 Speech Recognition Results 100
8.1 Word Error Rate . 100
8.2 Audio files workbench . 101
8.3 Regression tests results using the Wall Street Journal acoustic

models . 104
8.3.1 Acoustic insulated environment 105
8.3.2 White noise polluted environment 106
8.3.3 Blue noise polluted environment 108
8.3.4 Violet noise polluted environment 109
8.3.5 Pink noise polluted environment 111
8.3.6 Red noise polluted environment 112
8.3.7 Grey noise polluted environment 114
8.3.8 Babble noise polluted environment 115
8.3.9 Babble noise mixed with pink noise polluted environment116

8.4 Regression tests results using the Resource Management
acoustic models . 119
8.4.1 Acoustic insulated environment 120
8.4.2 Pink noise polluted environment 121

8.5 Regression tests results using the WSJ acoustic models and
an internal pink noise generator 122
8.5.1 Voss algorithm . 122
8.5.2 Pink noise generator implementation 125
8.5.3 Impact of the internal addition of pink noise 126

9 Conclusions and Future Work 129

Bibliography 133

Thematic Index 137

List of Tables

3.1 Values for the constants that characterize the filter bank . . . 46

4.1 Frequential limits of the vocal formants 57

8.1 Audio files workbench . 102
8.2 Recognition results obtained in an acoustic insulated environ-

ment . 105
8.3 Recognition results obtained in a white noise polluted envi-

ronment . 107
8.4 Recognition results obtained in a blue noise polluted environ-

ment . 109
8.5 Recognition results obtained in a violet noise polluted envi-

ronment . 110
8.6 Recognition results obtained in a pink noise polluted environ-

ment . 112
8.7 Recognition results obtained in a red noise polluted environment113
8.8 Recognition results obtained in a grey noise polluted environ-

ment . 115
8.9 Recognition results obtained in a babble noise polluted envi-

ronment . 116
8.10 Recognition results obtained in a babble noise mixed with pink

noise polluted environment . 118
8.11 Recognition results obtained in an acoustic insulated environ-

ment . 120
8.12 Recognition results obtained in a pink noise polluted environ-

ment . 121
8.13 Pattern of evaluation of the random number generators 123
8.14 Results obtained with the internal pink noise generator (PNG) 126

List of Figures

1.1 MFCC features extraction process 6

2.1 Trellis diagram of the Viterbi algorithm 19
2.2 HMM example . 21
2.3 HMM concatenation example 24

3.1 Sphinx-4 framework . 34
3.2 Sphinx-4 FrontEnd . 36
3.3 A data stream with only one speech region 40
3.4 A data stream with only one speech region after filtering . . . 40
3.5 A data stream with two speech regions 40
3.6 A data stream with two speech regions after filtering, when

mergeSpeechSegments is set to true 41
3.7 A data stream with two speech regions after filtering, when

mergeSpeechSegments is set to false 41
3.8 Relationship between original data, window size, window shift,

and the windows returned . 43
3.9 The Hamming window function with its corresponding spec-

tral diagram . 43
3.10 A Mel-filter bank . 45
3.11 Layout of the returned features 47
3.12 Delta and double delta vector computation 48
3.13 Example SearchGraph . 52

4.1 The proposed speech intelligibility enhancement system 59

5.1 Magnus architecture and main components. 64

6.1 Tunable high-pass shelving filter diagram. 77

List of Figures xiv

6.2 Step response of the desired controller. 79
6.3 Map between the cut-off frequency and the α parameter. . . . 81
6.4 De-esser structure. 83
6.5 Hard-knee compressor function. 84
6.6 Spectral plot of an enhanced speech utterance with a sibilant. 87
6.7 Temporal plot of a sibilant speech utterance. The most sibi-

lant parts of the chunk have been highlighted. 88

8.1 Frequential analysis of white noise 107
8.2 Frequential analysis of blue noise 109
8.3 Frequential analysis of violet noise 110
8.4 Frequential analysis of pink noise 111
8.5 Frequential analysis of red noise 113
8.6 Frequential analysis of grey noise 114
8.7 Frequential analysis of babble noise 116
8.8 Frequential analysis of babble noise mixed with pink noise . . 117
8.9 Frequential analysis of the pink noise generated by the Voss

algorithm . 125
8.10 Results deviations with respect to the abscence of the pink

noise generator . 127

Part I

Theory

Chapter 1

Approach to Speech
Recognition

In this chapter, a very basic and intuitive view of speech recognition sys-
tems is given, along with a set of technical vocabulary widely spead among
speech developers. Its intention is that the reader gets used to the descriptive
speech terminology.

A mathematical perspective of speech recognition is also given in order to
get used with the rigor by which this science can be very well described.

In this chapter, the basic analysis of an Automatic Speech Recognition
(ASR) system is described. From a very general point of view, the several
elements that build an ASR engine are discussed, making references con-
tinuously to the engine used in this project, named Sphinx-4, thoroughly
analyzed in the following chapters.

If more information is needed, please refer to [Colton, 2003], which is a
very basic but complete enough tutorial to get the gist of ASR systems
terminology, with some specific parts that are left out or summarized in this
paper. For deeper mathematical description of ASR processes, the reader is
invited to read [Rabiner, 1989] and [Rabiner and Juang, 1991].

1. Approach to Speech Recognition 3

1.1 Overview

Automatic Speech Recognition is a computerized process that receives as
input a speech signal, whether it may come from a recording previously taken
or a live signal from a microphone, and through deep digital signal processing,
it produces as its output a transcription of the spoken speech.

Despite this process is yet an unsolved problem, nobody in the world has
yet demonstrated the ability to do it as well as humans. ASR stands an
attractive study subject for many researchers and developers who want to
include such an outstanding technology in their applications. This fact im-
plies that although many ways have been, and are presently being, studied
and exploited, such systems dont have a 100% of reliability, so it must be
taken into consideration that any program that includes speech, voice or
sound recognition is subject to error. The goal of scientists is to provide a
method that aims at the ideal 100%, but it is a difficult task that still needs
some years of deep investigation.

Up to date, some learning algorithms are used to emulate human intel-
ligence, which is so far the one that best accomplishes the task of speech
recognition as stated before, and any artificial intelligence proposal is wel-
come to have a try on the game.

1.2 Intention

Speech starts with the intention to communicate. The intended sounds
produced by a speaker are meant to carry a meaning. But there are many
sounds on the other hand that do not mean anything in particular themselves:
a sigh, a sneeze, a hum... though in a human conversation may have a lot of
significance. It is the first ones which are of interest to ASR, obviously.

Sometimes, the production of a similar sound could confuse an accurate
analysis, but human listeners have developed a means of understanding the
gist of the vocal utterance by the use of common sense to resolve the ambi-
guity. This is also considered communication.

1. Approach to Speech Recognition 4

In the machine world, no intelligence is available, so it makes no sense to
expect a computer to understand a confusing utterance with common sense,
despite of the redundancy. But some models, called grammars, are of use to
provide a solution to this problem. There is more to be written about this
subject, but this is left to be dealt in the following chapters.

1.3 Articulation and resonance

Articulation is the act or process of dividing a unit into separate articles.
In the case that concerns speech recognition, the unit is a sound and the
articles are phonemes. We humans chain different phonemes to articulate
speech utterances by the action of the mouth, nose and throat.

There are many aspects involved in articulation. As the air flows through
the vocal cords, a tone or pitch is created. When this tone is present, the
speech is said to be voiced. When it is absent, the speech is whispered. All
vowels are voiced, but this premise doesn’t apply to all consonants. There are
some that are voiced, some that are not and some that are both voiced and
unvoiced. This is a very important aspect to take into consideration because
whispered consonants, yet humans can generally understand them, the ASR
techniques cannot detect as many differences as voiced sounds. So the focus
is on the voiced speech when it comes to recognition. Again, there is more to
be said about this topic, because for example one of the goals to improve the
speech intelligibility (and so the accuracy of the speech recognition system)
is by emphasizing the presence of consonant sounds. More about this in the
Speech Enhancement section.

Also, when articulating, the positioning of tongue, jaw and lips creates res-
onant chambers of various sizes within the head that contribute additionally
to the speech tonality.

1.4 Hearing

Another important consideration is to be made when referring to commu-
nication: the hearing, because the computer running an ASR software must
emulate human hearing in some way (there’s an insistence on emulating a

1. Approach to Speech Recognition 5

human behavior on a machine, but again, we humans have developed, during
our evolution, a unique and singular way of communicating that has not yet
been imitated). This is achieved by the transformation of spoken sound sig-
nals into specific coefficients that represent the way humans perceive speech.

And yet, this last point concludes into a discrete and compressed repre-
sentation of the signals that will make it possible to compute them for the
following processes. Because humans perceive acoustic signals between 30Hz
and 20KHz with a varying frequency response, this leads to the named Mel
Scale, after the Melodic Scale. When filtering and parameterizing the incom-
ing sound signals through the Mel frequency response, some coefficients can
be obtained in order to perform the recognition in a similar way we humans
do. This matter is exposed in the following chapters.

1.5 Features Extraction

Speech recognition systems do not interpret the speech signal directly, but
rather a set of features vectors derived from the speech signal. In this thesis,
as in most current speech recognition systems, the speech signal is parame-
terized into a sequence of vectors called Mel-Frequency Cepstral Coefficients
(MFCC) [Davis and Mermelstein, 1980], or simply cepstral coefficients.

Cepstral coefficients attempt to approximate the spectral processing of
the auditory system in a computationally efficient manner. They emulate
the human auditory system through the use of the mel scale, which maps
the frequency response of the auditory system. The incoming speech signal
is divided into a sequence of short overlapping segments, called frames. Each
frame is processed as follows. The frame is windowed and then transformed
to the frequency domain using a Short-Time Fourier Transform (STFT) .
More about this transform is available in [Nawab and Quatieri, 1987]. The
squared magnitude of the STFT is computed and then multiplied by a series
of overlapping triangular weighting functions called mel filters. These trian-
gular filters are equally distributed along the mel frequency scale with a 50%
overlap between consecutive triangles. These filters are spaced in frequency
approximately linearly at low frequencies and logarithmically at higher fre-
quencies. The mel spectrum of the frame is computed as a vector whose
components represent the energy in each of the mel filters. To approximate

1. Approach to Speech Recognition 6

human auditory processing more closely, the natural logarithm of each of
the elements in the mel spectral vector is then computed, producing the log
mel spectrum of the frame. Finally, this vector is converted to mel-frequency
cepstra via a Discrete-Cosine Transform (DCT) and then a truncation. The
features extraction process is shown in Figure 1.1.

Figure 1.1: MFCC features extraction process

The input to a speech recognition system is typically a sequence of vec-
tors composed of the mel-frequency cepstral coefficients as well as their first
and second temporal derivatives, approximated by using first and second
differences of neighboring frames, respectively.

The type of features vectors used for speech recognition purposes is not
restricted to MFCCs. Any type of features of any dimensionality could be
used successfully instead, but MFCCs are currently known to be the best
single features parametrization for good speech recognition performance in
HMM-based systems under most acoustic conditions.

1.6 Microphone

In a speech recognition system, a microphone substitutes the ears. The
pressure waves that compose sounds are transduced into an analog electrical
signal by many different means depending on the quality of the transducer,
which name is a microphone. It is very important that a minimum quality
of the device is used, because this can make the difference between a good
functioning system and a bad functioning one. The quality is rather critical,
unfortunately, because the many tests run show empirically that although
the difference is insignificant to a human listener, it becomes abysmal to a
recorded signal, and hence, an ASR system.

There are also some methods to attenuate the unwanted noise that a bad
microphone gives, or the unwanted noise that a noisy environment offers.

1. Approach to Speech Recognition 7

Active filtering stands for one of the most attractive solutions, implemented
as a noise cancellation method, using a second microphone closer to the noise
source and a well tuned algorithm such as Kalman Filtering the results can
be spectacular. Refer to [Kybic, 1998] for a deeper analysis on Kalman Fil-
tering applied to speech enhancement, which may derive into a better speech
recognition system. Other more modest methods such as spectral subtrac-
tion could be used as well if another microphone was available. Anyway, the
implementation of these filtering techniques should not worry the reader at
this point since the matter that concerns now is speech recognition.

1.7 Digitization

Since the process that the ASR software will end up doing is a digital
signal process, one crucial point is the conversion form the analog world into
the discrete domain. This is achieved using the Analog Digital Converters
(ADC) by sampling the signal as many times per second (i.e. sampling rate)
as necessary to accomplish the Nyquist’s Theorem, which basically states
that to correctly resolve a signal at some frequency, it has to be sampled at
more than twice the maximum frequency that composes the signal so as to
avoid aliasing. In the project, it can be demonstrated that within 8KHz there
is enough information in oral speech, at least, enough to clearly distinguish
the voiced phonemes. So, the sample rate used by the Sphinx-4 engine is
16KHz.

Another feature involved in digitization is the amplitude quantization pro-
cess which introduces a quantization error. This error is related to the num-
ber of bits that are required to represent the real signal. Of course, the more
bits the better, but the larger amount of information. A compromise must
be reached in order to treat the minimum volume of information and manage
an adequate sound signal quality. When using Sphinx-4, this magnitude is
set to 16 bits, the same as the standard quality of a CD recording.

1.8 Spectrogram

Spectrogram is the name given to a voice print. In more common language
it could be defined as the analysis of the many features that compose a voice

1. Approach to Speech Recognition 8

signal. These properties can be extracted, basically, by one of the many
distinct expressions of the Fourier Transform, depending on the domain of
use. This transform allows the frequency representation of the signal, so, the
many sine tones that compose it.

The signal in question must be divided into frames to extract bundles of
data almost stationary in order to obtain relevant features. These frames
must then be windowed, that is, multiplied temporally, by a known smooth
function (window) that eliminates the discontinuities in the edges of the
signal and so avoids false representations.

And one last aspect worth mentioning is the formants, which are the fre-
quency strong bands that move across time in a frame transformation. Each
band represents a resonance in the speech production system of the person
talking. It’s interesting to focus on the transitions occurring because of all
the phoneme pronunciations and see how they are registered by the move-
ment of the formant bands. Each sound is represented by its corresponding
formant fingerprint.

1.9 Phonemes

This linguistics related concept is any of a small set of units considered to
be the basic distinctive units of speech sounds by which morphemes, words,
and sentences are built. So they are the tiniest units of speech that distin-
guish meaning.

Phonemes may vary slightly from person to person, though even when
they are articulating the same one. This is because the unique vocal register
of a person. Although on a single person it may vary slightly from time
to time, it must be taken for the same any time. Tolerance is the amount
of variation that is allowed before something becomes unusable, or unrecog-
nizable. For purposes of speech recognition, the same word pronounced by
different speakers should still be recognized as the same word. This stands
a big challenge when one of the subjects in question is a foreigner.

Another related concept which deals with “phoneme similarity” is the al-
lophone. An allophone is one of several similar phones that belongs to the

1. Approach to Speech Recognition 9

same phoneme. A phone is a sound that has a definite shape as a sound
wave, while a phoneme is a basic group of sounds that can distinguish words.
Thus an allophone is a phone considered as a member of one phoneme.

1.10 Fluent speech

Fluent speech is one serious aspect in speech recognition, because one
word blends into the next, and so on. Computers cannot easily divide the
phonemes into words.

Because of fluency and coarticulation effects, the word boundaries are dif-
ficult to detect, and so, when having to split an utterance into several words,
or a word into its constituent phonemes, it becomes a very difficult task to
achieve. It is then when the effects of imondegreens occur, which mean that
two different sentences, for example, with a different written expression, are
phonetically the same, and in consequence, sound the same. In more tech-
nical terms, a mondegreen is the mishearing (usually accidental) of a phrase
as a homophone or near-homophone in such a way that it acquires a new
meaning. A homophone is a word that is pronounced the same as another
word but differs in meaning.

Another interesting aspect of speech misunderstanding is the spontaneous
speech. In spontaneous speech, speakers will often utter more than one con-
tribution during their turn of speaking. Unlike written text, there are no
explicit punctuation marks that delimit one utterance from the next. Fur-
thermore, due to the online nature of spontaneous speech, speakers some-
times need to revise what they have just said, by making a speech repair,
which will help resolving their intended contribution.

One interesting and useful way to face all these problems is by the use
of grammars. If a computer expects a determined grammatical structure, it
may ease the task of finding the correct word boundaries and so splitting
them successfully.

Another interesting approach to this flaw is the addition of more variables
to the system, such as the GMT, the weather, etc. in order to determine

1. Approach to Speech Recognition 10

the right transcription in a given environment. For example, if someone
is asked if he or she is hungry yet, it would make sense if it happened at
midday, or if he or she was going to take the umbrella, if the weather forecast
announced that rain was coming soon. It would be easier to understand
the exemplified questions if some information was known beforehand. This
would be like giving some sort of common sense to computers, which is tough,
see [Lieberman, 2002] for an intuitive lecture on the matter, but any good
reasoned proposal is welcome.

1.11 Understanding

Understanding natural language is part of the more renowned term called
Natural language Processing (NLP), which is a subfield of artificial intelli-
gence and linguistics. It studies the problems of automated generation and
understanding of natural human languages.

Natural language generation systems convert information from computer
databases into normal-sounding human language, and natural language un-
derstanding systems convert samples of human language into more formal
representations that are easier for computer programs to manipulate.

In theory, natural language processing is a very attractive method of
human-computer interaction and is sometimes referred to as an artificial in-
telligence complete problem, because natural language recognition seems to
require extensive knowledge about the outside world and the ability to ma-
nipulate it. The definition of “understanding” is one of the major problems
in natural language processing to evaluate.

The goal of NLP evaluation is to measure one or more qualities of an
algorithm or a system, in order to determine if (or to what extent) the system
answers the goals of its designers, or the needs of its users.

1.12 Response

This matter is usually taken for granted in a normal human conversation,
because the slightest of the sighs or murmurs would be taken as a sign of

1. Approach to Speech Recognition 11

response. It is specially important for speech recognition application devel-
opers not to leave the computer in standby, despite internally it could be
computing the strangest of the mathematical operations.

To avoid communication breakdown, there should be always a kind of
response from the computer, to avoid giving the feeling of hanging up or
malfunctioning, such as a sudden frozen screen.

1.13 Techniques

In order to deal with such a maddening matter, ASR systems take much
advantage from the artificial intelligence methods to provide a solution to this
problem. There’s one historically interesting approach called the Dynamic
Time Warping (DTW), which is an algorithm for measuring similarity be-
tween two sequences which may vary in time or speed. Despite of its interest,
it has been displaced by other more “intelligent” techniques, such as the Ar-
tificial Neural Networks (ANN) and the Hidden Markov Models (HMM).

Neural Networks are designed as a means of somehow implementing the
paradigm of human intelligence, they emulate neurons, which are the basic
unit of our brain and neuron system, and let them learn from prepared en-
vironments. The virtual neurons interpolate the different tests, making an
unclear internal mathematical representation, that allows them to extrap-
olate a new solution to a new environment never seen before. But again,
despite of its interest, this method lacks specialization, and again it has been
displaced by the Hidden Markov Models, which basically seek the same goals,
but maximizing the interests of speech recognition given a set of premises.
More about HMMs is on the come in the following chapters.

Now, given a phoneme string and a set of processed outputs from any of
the intelligent solutions, it is possible to measure how well they match. The
search results in an optimal alignment between the utterance and the target
phonemes in oder to decode the input message.

Chapter 2

HMM-based Speech
Recognition

This chapter delves into the world of Hidden Markov Models, the base for
modern speech recognition systems. A first overview of their use in the speech
recognition field is given, just to avoid losing sight of the goals that should be
accomplished. Then the Maximum Likelihood method is presented, which is
the common point shared by the several estimation theories used in pattern
recognition. Afterwards the internal constitution of the HMMs is described,
with the problems associated to them and the algorithms that provide so-
lutions to these problems and finally the modeling of the real world with
an uncertainty factor, which gives place to the HMM-based representation of
the sounds that form the classes whose parameter values are to be estimated.

As described in the previous chapter, HMMs provide an idyllic cushion for
developing speech recognition applications. [Seltzer, 2003] gives a very good
and accurate description of HMM-based ASR. His thesis has been of much
help for this chapter.

2.1 Maximum Likelihood

Speech recognition systems are statistical pattern classification systems.
In these systems, sounds or sequences of sounds, such as phonemes or words
are modeled by distinct classes. The goal of the speech recognition system
is to estimate the correct sequence of classes, i.e. sounds, that make up the

2. HMM-based Speech Recognition 13

incoming utterance, and hence, the words that were spoken.

Maximum Likelihood (ML) estimation is a “best-fit” statistical method
for the estimation of the values of the parameters of a system, based on a set
of observations of a random variable that is related to the parameters being
estimated. Note that the parameters are not themselves random variables.
Rather, they are assumed to be unknown constants.

So in state-of-the-art recognition systems, speech recognition is not per-
formed directly on the speech signal. The speech waveform is divided into
short segments or frames and a vector of features is extracted from the sam-
ples of each frame. For convenience, since the speech recognition engine used
in this thesis is phoneme-based, the frames will be parts of the phonemes
that build the speech utterances, and so, the values of the parameters of
such phonemes, say the MFCCs of a phoneme, will be estimated in order to
perform the recognition tasks.

If Z represents a sequence of features vectors extracted from a speech
waveform, speech recognition systems operate according to the optimal clas-
sification, Equation (2.1), which is based on the ML method.

ŵ = argmax
w∈W

P (w|Z) (2.1)

In Equation (2.1), ŵ is the sequence of parameters (phonemes, or words, or
any other estimable variable) hypothesized by the recognition system and W
is the set of all possible sequences that can be hypothesized by the recognition
system. The idea is that the parameters of the phonemes may be estimated,
to then create a set of possible phonemes, which could be grouped into words,
to then create a set of words which in their turn could be grouped into... The
story repeats recursively.

However, Equation (2.1) is not actually computed. Instead, Bayes rule is
used to rewrite it as expressed in Equation (2.2).

ŵ = argmax
w∈W

P (Z|w)P (w)

P (Z)
(2.2)

2. HMM-based Speech Recognition 14

P (Z|w) is the acoustic likelihood or acoustic score, representing the prob-
ability that a features sequence Z is observed given that phoneme sequence
w was spoken, and P (w) is the language score, the a priori probability of a
particular phoneme sequence w. This latter term is computed using a lan-
guage model. Because Equation (2.2) is to be maximized with respect to the
phoneme sequence w for a given (and therefore fixed) sequence of observa-
tions Z, the denominator term P (Z) can be ignored in the maximization,
resulting in Equation (2.3).

ŵ = argmax
w∈W

P (Z|w)P (w) (2.3)

Note that the ML estimate (on which the HMM-based speech recognition
is built) is dependent with the observed samples. This can lead to errors in
estimation since the observed samples may not be a fair representation of the
distribution of the random variable. This usually occurs when the number of
observed samples is small. So bearing this in mind future problems should
be avoided. For example, if the parameter in question to be estimated was
the mean, then, it is obvious to think that two people could not represent
the majority of a group of a million individuals, but a thousand people could
possibly be a more fair representation of the group, or at least yield a more
accurate result than the previous sample.

This degree of accuracy is given by the models, the HMMs, that build
the base of a speech recognition system. Each HMM is associated with a
sound unit and learns its parameters, say acoustic features. This process
is called training. Then the resulting HMMs are used to deduce the most
probable sequence of features, related to the sound units, according to the
ML estimate, and this process is called decoding.

2.2 Basis of Hidden Markov Models

The tutorial provided by [Dugad and Desai, 1996] has been taken for ref-
erence because of its conciseness and clarity. However, the article approx-
imates to the HMMs taking a finite, or discrete, number of distinct obser-
vation symbols, say features vectors for the case that concerns this thesis.

2. HMM-based Speech Recognition 15

These features vectors are actually MFCCs, velocities of MFCCs and accel-
erations of MFCCs, which correspond to the first and second derivatives of
the MFCCs respectively. Since they are defined in the continuous domain
an infinite number of different symbols would be necessary to warp the en-
tire continuous domain. Thus, instead of dealing with probability functions
(discrete domain), probability density functions (continuous domain) are of
use to define the output probabilities of the features vectors.

2.2.1 Overview

A Hidden Markov Model is a statistical model in which the system being
modeled is assumed to be a Markov process (and thus a stochastic process)
with unknown parameters, and the challenge is to determine the hidden pa-
rameters from the observation sequence. This sequence is given by the out-
comes produced by the HMM in question. The extracted model parameters
can then be used to perform further analysis, for example, for pattern recog-
nition applications. Eventually, as stated in the previous chapter, speech
recognition systems are pattern classification systems.

In a regular Markov model, the states are directly visible to the observer,
and therefore the state transition probabilities are given parameters. For
any instant of time, the process should be in any of its possible states, then
the transition probabilities are only determined by this state in question,
independently from the past states sequence already transited.

In a Hidden Markov Model, the states are not directly visible, but variables
influenced by the states are visible. Each hidden state has a probability
distribution over the possible output tokens. Therefore the sequence of tokens
(observation sequence) generated by a HMM gives some information about
the sequence of states.

In order to describe the content and behavior of a HMM accurately, the
following notation is defined:

N ⇒ number of states in the model. The amount of states in a HMM is
related to the time-varying characteristics of the sound units. Sounds
which are highly time-varying need more states to represent them.

2. HMM-based Speech Recognition 16

T ⇒ length of the observation sequence, i.e. the number of observed features
vectors.

st ⇒ denotes the present state s at time t.

π = {πi} where πi = P (s1 = i) is the probability of being in state i at the
beginning of the experiment, i.e. at t = 1.

A = {a(i, j)} where a(i, j) = P (st+1 = j | st = i) is the probability of being
in state j at time t+1 given that previously, at time t, the state was i.
It is assumed that the several a(i, j) are independent of time because
of the memoryless system modeled by the Markov process, or in other
words, they don’t depend on past transitions. So the probability of
going from one state to another is given only by the present state at
any time. A represents the transition matrix.

B = {b(z, i)} where b(z, i) = P (z | st = i) is the probability of observing
the features vector z given that the present state is i. B represents the
confusion matrix.

zt ⇒ denotes the features vector observed at instant t.

Z = {z1, z2, ..., zT} denote the sequence of features vectors observed, a.k.a.
the observation sequence.

λ = (A, B, π) is used as a compact notation of a HMM.

Using this model, an observed sequence of features vectors Z =
{z1, z2, ..., zT} is generated as follows: the experiment starts by choosing
one of the states (according to the initial probability distribution π), then
a features vector is determined by the probability distribution b(z, i). This
beginning instant of time is taken as t = 1 and the state and features vec-
tor determined at this moment are denoted by s1 and z1 respectively. After
this, the following state st+1 is determined (it may be same or different from
st) according to the transition probability distribution given by the tran-
sition matrix A and again a new features vector (denoted by z2) is deter-
mined from this new state depending on the probability distribution for that
state. Continuing this up to time t = T , the sequence of features vectors
Z = {z1, z2, ..., zT} is generated.

2. HMM-based Speech Recognition 17

Another point of view could be established from the Bayesian networks’
perspective since Bayesian networks are directed acyclic graphs (DAG) that
represent dependencies between variables in a probabilistic model, as stated
in [Ghahramani, 1998]. Then the time series models including the HMMs
used in speech recognition could be viewed as examples of dynamic Bayesian
networks. This is an interesting approach since there is high dependence
of the output sequence on the variables that characterize the HMM, say
the state individual bias, the transition probabilities between the several
states and the state which is chosen to begin the observations. There is
more to be found about Bayesian networks in the article referenced in this
paragraph. It is not the intention of this thesis to provide a thorough study
of this alternative, it is rather left for the reader to delve into it as a different
approach to the matter.

2.3 Problems associated with HMM

In the end, most applications based on HMMs are finally reduced to solving
the three main problems cited in the following description:

Problem 1 Given the model λ = (A, B, π), the computation of P (Z|λ),
which is the probability of occurrence of the observation sequence Z =
{z1, z2, ..., zT}.

Problem 2 Given the model λ = (A, B, π), the choice of a states sequence
I = i1, i2, ..., iT so that P (Z, I|λ), the joint probability of the observa-
tion sequence Z and the states sequence given the model, is maximized.

Problem 3 The adjustment or tuning of the HMM parameters λ =
(A, B, π) so that P (Z|λ) (or P (Z, I|λ)) is maximized.

Problems 1 and 2 are considered analysis problems while Problem 3 is
considered a synthesis (or model identification or training) problem. The
algorithms described in the following sections are used to provide solutions
to these problems. They are based on the Maximum Likelihood method
introduced in the previous section.

2. HMM-based Speech Recognition 18

2.4 Solutions to the Three Problems

This section provides a description of the main algorithms used to solve the
Three Problems. Although there are other different approximations or per-
spectives of the algorithms in the bibliography associated with HMMs, the
general idea is shared by them all. They all make use of dynamic program-
ming techniques, which are methods for optimally solving the big problems
through the overlapping of simpler subproblems and defining optimal struc-
tures. The use of these dynamic techniques take much less time than naive
methods.

2.4.1 Forward-Backward algorithm

This algorithm provides a solution to Problem 1. Given a model, the
algorithm computes inductively the probability of the partial observation
sequence up to a time and the probability of being at a concrete state at
that time.

A brute force procedure for the solution of this problem would imply the
generation of all possible sequences of observed features vectors given a con-
crete states sequence, for all possible states sequences. Since the number of
possible states sequences is geneally huge, the solution becomes intactable for
realistic problems. It is then when the Forward-Backward algorithm plays
an important role in this because it reaches the solution within a time com-
plexity order of TN2 compared to the time complexity yielded by the brute
force procedure, which is TNT .

2.4.2 Viterbi algorithm

This algorithm provides a solution to Probem 2. It is an inductive proce-
dure in which at each instant of time it keeps the best (i.e. the one giving
maximum probability) possible states sequence for each of the N states as
the intermediate state for the desired features vector sequence Z. It finally
yields the best path for each of the N states as the last state for the desired
observation sequence. Out of these, the one which has the highest proba-
bility is selected. So, the gist of the Viterbi algorithm is that it estimates
the optimum states sequence, and it does so by reformulating the problem
accurately. It is a maximization of the Forward-Backward algorithm.

2. HMM-based Speech Recognition 19

Typically the Viterbi algorithm is visually represented by a trellis dia-
gram, where the aim is to find the best path through a matrix where the
vertical dimension represents the states of the HMMs and the horizontal di-
mension represents the frames of speech (i.e. time). Figure 2.1, extracted
from [Young et al., 2006], represents the algorithm as described.

Figure 2.1: Trellis diagram of the Viterbi algorithm

Each large dot in Figure 2.1 represents the log probability of observing that
frame at that time and each arc between dots corresponds to a log transition
probability. The log probability of any path is computed by summing the
log transition probabilities and the log output probabilities along that path.
The paths are grown from left to right column by column. At time t, each
partial path is known for all states enabling the computation of this partial
likelihood, which operated recursivelly becomes the Viterbi algorithm.

The reason for using logs instead of the actual values comes from the fact
that the direct computation of the real values ends up being very small,
leading to underflow, because of the several products involved in the re-
estimation process. Taking the logarithm of such small values enables the
system to have more tractable results.

2. HMM-based Speech Recognition 20

2.4.3 Baum-Welch algorithm

This algorithm provides a solution to Problem 3, which is a maximization
of the solution to Problem 1 through the adjustement of the parameters of
the model λ. This optimization criterion is called the maximum likelihood
criterion.

To determine the parameters of a HMM it is first necessary to make a
rough guess at what they might be. Once this is done, more accurate (in
the maximum likelihood sense) parameters can be found by applying the so
called Baum-Welch re-estimation formulæ.

Since the full likelihood of each observation sequence is based on the sum-
mation of all possible states sequences, each observation vector (features
vector) contributes to the computation of the maximum likelihood param-
eter values for each state. In other words, each observation is assigned to
every state in proportion to the probability of the model being in that state
when the vector is observed. Such probability is efficiently calculated using
the Forward-Backward algorithm.

2.5 Modeling the Distributions of Sequences

of Features Vectors

In frame-based statistical speech recognition systems, the speech produc-
tion mechanism is characterized as a random process which generates a se-
quence of features vectors. In Hidden Markov Model speech recognition
systems, the random process which corresponds to a particular phoneme is
modeled as a HMM, which can be characterized by the following:

• a finite number of states.

• a state-transition probability distribution which describes the proba-
bility associated with moving to another state (or possibly back to the
same state) at the next time instant, given the current state.

• an output probability distribution function associated with each state.

2. HMM-based Speech Recognition 21

Figure 2.2: HMM example

An example of a HMM is shown in Figure 2.2. HMMs will be generally
stated to have N states. The solid arrows represent the allowable transitions
from each state, which in this example, and due to the sequential nature of
speech, are restricted back to the current state or to the state immediately to
the right, all other state transitions have probability zero, but could actually
point to any state of the diagram in general if the system in question being
modeled didn’t have the sequential property of a speech utterance.

Due to this sequential property and the need of achieving real-time speeds,
contemplating the variable speed of the different models, the HMM topology
can be parameterized to be a strict left-to-right Bakis topology, which enables
the HMMs to skip states.

The probability of going from state i to state j is labeled on each arrow as
pj|i. The dotted arrows point to the observations (features vectors) generated
by the respective states, which have probability density distributions associ-
ated with each state. Note that the initial and final states are non-emitting.
No observations are associated with these states. The final state is also an
absorbing state since when this state is reached, no further transitions are
permitted.

The statistical behavior of a HMM representing a given phoneme is gov-
erned by its state transition probabilities and the output distributions of its
constituent states. For a HMM modeling phoneme w, the transition prob-
abilities are represented by a transition matrix, Aw. The elements of this
matrix, aw(i, j) represent the probability of transiting to state j at time t+1
given that state i is occupied at time t. Thus, if the HMM for phoneme w has

2. HMM-based Speech Recognition 22

N states, Equation (2.4), which represents pj|i in Figure 2.2, can be easily
deducted.

N∑
j=1

aw(i, j) = 1 (2.4)

The state output probability distribution functions and the state transition
probability distributions are usually modeled as Gaussians or mixtures of
Gaussians. The number of HMM parameters to be estimated increases as
the number of Gaussians in the mixtures increase resulting in less data being
available to estimate the parameters of every Gaussian distribution. However,
such an increase produces finer models which lead to a better recognition
performance.

Typically, in order to improve computational efficiency, the Gaussians are
assumed to have diagonal covariance matrices, i.e. covariance matrices where
the off-diagonal elements are all 0. Thus, the output probability of a features
vector z belonging to the state i of a HMM for phoneme w is represented
in Equation (2.5), where αw

ik, µw
ik and Σw

ik are the mixture weight, mean
vector and covariance matrix associated with the kth Gaussian in the mixture
density of state i of the HMM of phoneme w.

bw(z, i) =
∑
k

αw
ikΩ(z; µw

ik, Σ
w
ik) (2.5)

It is defined Bw as the set of parameters {αw
ik, µ

w
ik, Σ

w
ik} for all mixture

components for all states in the HMM for phoneme w. Bw is sometimes
referred to as the confusion matrix. Finally, λw = (Aw, Bw) is defined as the
complete set of statistical parameters that define the HMM for phoneme w.
Typically, along with Aw and Bw, a third parameter identified by πw is given,
which represents the probability of being at a concrete state at the beginning
of the process. But due to the sequenciality of speech, it is assumed that the
first state, or the state of departue, is always the leftmost state.

To generate a sequence of N features vectors for a phoneme modeled by
a HMM, the generator is assumed to transit at least through a sequence of

2. HMM-based Speech Recognition 23

N + 2 states in the HMM presented in this section, beginning with the non-
emitting initial state and terminating in the non-emitting final state, or as
already named, the absorbing state. At each time instant, a features vector
is drawn from the probability distribution of the state currently occupied.
The sequence of vectors so generated is said to be generated by the HMM.

For the computation of the probability that a given sequence of features
vectors Z = {z1, z2, ..., zT}, generated by the HMM for phoneme w, referred
to as HMMw, let S denote the set of all possible state sequences of length
N through HMMw. The total probability that HMMw generated Z can
be expressed as in Equation (2.6), where s = {s1, s2, ..., sT} represents a
particular states sequence through HMMw.

P (Z|w) =
∑
s∈S

P (Z, s|w) =
∑
s∈S

P (Z|s)P (s|w) (2.6)

The expression P (s|w) represents the probability of a particular states se-
quence and is computed from the state transition matrix Aw. The expression
P (Z|s) represents the probability of a particular sequence of features vectors
given a states sequence, and is computed from the state output probability
distributions using Equation (2.5). Thus, Equation (2.6) can be rewritten as
Equation (2.7).

P (Z|w) =
∑
s∈S

(
T∏

t=1

aw(st, st+1)

)(
T∏

t=1

bw(zt, st)

)
(2.7)

The substitution of Equation (2.7) into Equation (2.3) leads to the expres-
sion used to perform speech recognition, Equation (2.8).

ŵ = argmax
w

{
P (w)

∑
s∈S

(
T∏

t=1

aw(st, st+1)

)(
T∏

t=1

bw(zt, st)

)}
(2.8)

However, for computational effciency, most HMM speech recognition sys-
tems estimate the best states sequence, i.e. the states sequence with the
highest likelihood, associated with the estimated hypothesis. Thus, recogni-
tion is actually performed as in Equation (2.9).

2. HMM-based Speech Recognition 24

ŵ = argmax
w,s∈S

{
P (w)

(
T∏

t=1

aw(st, st+1)

)(
T∏

t=1

bw(zt, st)

)}
(2.9)

While this discussion has only involved the recognition of single phonemes,
thus being Isolated Unit Recognition, as stated before the HMM framework
can easily be expanded to model strings of phonemes, w = [w1, w2, ..., wT],
say words, and in fact this is the idea to exploit the full power of speech
recognition systems. If individual phonemes are modeled by unique HMMs in
the manner described, then HMMs corresponding to sequences of phonemes
can easily be built by concatenating the HMMs of the constituent phonemes.
An example of this is shown in Figure 2.3 for an utterance composed of two
phonemes.

Figure 2.3: HMM concatenation example

Each model in the sequence corresponds directly to the assumed underlying
symbol, which could be either whole words for so-called connected speech
recognition or sub-words such as phonemes (as is the case in this thesis)
for continuous speech recognition. The reason for including the non-emitting
entry and exit (absorbing) states should now be evident. These states provide
the linking mechanism needed to join models together.

There are, however, some practical difficulties to overcome. The training
data for continuous speech must consist of continuous utterances and, in
general, the boundaries dividing the segments of speech corresponding to
each underlying sub-word model in the sequence are unknown. In practice, it
is usually feasible to mark the boundaries of a small amount of data by hand.

2. HMM-based Speech Recognition 25

All segments corresponding to a given model can then be extracted and an
isolated training style as described in the Baum-Welch subsection above could
be used. However, the amount of data obtainable in this way is usually very
limited and the resultant models obtained are of poor quality. In order to
improve such situation embedded training is used. This method uses the same
Baum-Welch procedure but rather than training each model individually all
models are trained in parallel, obtaining more accurate results.

Aiming to provide a good continuous speech recognition performance with
the connected models the situation becomes significantly more computation-
ally demanding and in fact impractical, because Equation (2.9) would have to
be evaluated for every possible phoneme sequence in the language. To over-
come this problem, the Viterbi algorithm [Viterbi, 1967] yields an effcient
dynamic programming method used to obtain a locally optimal estimate of
the phoneme sequence w.

Dynamic pogramming is used extensively in speech recognition. It is a
method of solving an initial problem, usually a big and complex one, through
the use of a recursive techique that divides the large problem into many
smaller subproblems and finds the optimal solution to these subproblems by
dividing them again and again until a trivial case is reached. The solution to
the trivial case is found in a constant time. Then the optimal smaller solu-
tions are overlapped to find the optimal solution for the initial big problem.
This optimal structure speeds up the determination of the main solution.

In the speech recognition engine used in this thesis each phoneme (basic
unit) is modeled by a 3-states HMM. More complex structures (words) are
built by concatenating these phoneme HMMs. This leads to a big load of
parameters needed by the HMMs. To overcome such a possible data insuf-
ficiency problem, the parameters of the Gaussian mixtures which define the
output probabilities of the states of the HMM (set to 8 Gaussians per state),
are shared across states of various phonemes. The states which share pa-
rameters in this manner are called tied states or senones. Their reason to be
comes from the fact that if only the modeling of single base acoustic units,
or basephones, is used then the system becomes impractical to be trained
because of the vast number of states that result. Then to keep things man-
ageable the HMM states are clustered into a much smaller number of groups,

2. HMM-based Speech Recognition 26

which are then called senones, and all the states mapped into one senone
share the same underlying statistical model. The sharing is done in such a
way as to preserve the “individuality” of each HMM, in that only the states
with the most similar distributions are “tied”. If the degree of tying is small,
a larger number of possibly dissimilar states may be tied, resulting in a few
too generalized senones that will cause a poor recognition performance. On
the other hand, if this degree of tying is too large, there may not be enough
data available to estimate the parameters of all the Gaussian mixtures. Then
an obvious compromise is to be reached here in order to achieve a good per-
formance of the system at a reasonable amount of resources. The state tying
can reduce the total number of HMM states by one or two orders of mag-
nitude. More information on procedures for this parameter sharing can be
found in [Hwang and Huang, 1993].

2.6 Key Decoding Issues

The most important issues about the efficient use of a decoder are those
relating to its decoding speed, memory usage and power consumption. The
performance of a decoder is often dependent on the tradeoff between settings
applied to minimize resource usage and maximuze speed, those necessary to
acomodate a particular size and complexity of the acoustic models, language
models and dictionary, and the recognition accuracy. Many of these tradeoffs
must be decided at the training stage. Further changes on settings are done
in the decoder.

For managing memory efficiently there are a few strategies that should
be taken into consideration in order to obtain the best possible results for
a particular case. The first one is not an efficient memory management
technique itself: it consists on limiting the heapsize, which is the amount of
memory allowed to the system that executes the recognition program. It is
more related to computer science than to anything else, but it is a naive way
of dealing with the memory overflow problem. The rest of the methods are
described in the following subsections.

2. HMM-based Speech Recognition 27

2.6.1 Active Lists and Beamwidths

The proper specification of the of the size of what are called Active Lists
enables controlling both memory usage and speed. At any time during the
search, an active list is comprised of those Gaussian densities which must be
explicitly computed by the decoder given the current data vector. This is
a subset of all Gaussians present in the acoustic models being used by the
decoder and have been reached by current paths in the trellis.

Now referring to the Beamwidths, the absolute beam width is convention-
ally a fixed number that defines the maximum size of the active list. The
relative beam width varies from time instant to time instant and is defined
with reference to the maximum scoring node in the decoder’s trellis at the
given time instant. An existing threshold determines that the nodes which
have a score lower than this threshold are not allowed to propagate further.

2.6.2 Language Weight

The language weight decides how much relative importance is given to the
actual acoustic probabilities of the words in the hypothesis. A low language
weight gives more leeway for words with high acoustic probabilities to be
hypothesized, at the risk of hypothesizing spurious words.

In order to be more precise in the explanation of this matter, a few math-
ematic concepts are taken in the following parts.

Language Model

Speech recognition systems treat the recognition process as one of
maximum-a-posteriori estimation, where the most likely sequence of words
is estimated, given the sequence of features vectors for the speech signal.
Mathematically, this can be represented as Equation (2.10).

W1 W2 W3 ... = argmaxWd1 Wd2 ...{P (Z|Wd1 Wd2 ...)P (Wd1 Wd2 ...)}
(2.10)

2. HMM-based Speech Recognition 28

In Equation (2.10) ‘W1 W2 ...’ represent the recognized sequence of words,
and ’Wd1 Wd2 ...’ represent any sequence of words. The argument on
the right hand side of Equation (2.10) has two components: the probability
of the features vectors given a sequence of words P (Z|Wd1 Wd2 ...), and
the probability of the sequence of words itself P (Wd1 Wd2 ...). The first
component is given by the HMMs and the second component, a.k.a. the
language component, is provided by a language model.

The most commonly used language models are the N-gram language mod-
els . These models assume that the probability of any word in a sequence
of words depends only on the previous N words in the sequence. Thus, a
2-gram model or bigram language model would compute P (Wd1 Wd2 ...) as
stated in Equation (2.11).

P (Wd1 Wd2 Wd3 ...) = P (Wd1)P (Wd2|Wd1)P (Wd3|Wd2) ... (2.11)

Similarly, a 3-gram or trigram model would compute it as stated in Equa-
tion (2.12).

P (Wd1 Wd2 Wd3 ...) = P (Wd1)P (Wd2|Wd1)P (Wd3|Wd2, Wd1) ...
(2.12)

Language Weight

Although strict maximum-a-posteriori estimation would follow Equation
(2.10), in practice the language probability is raised to an exponent for
recognition. Although there is no clear statistical justification for this, it
is frequently referred to as “balancing” of language and acoustic probability
components during recognition and is known to be very important for good
recognition. The recognition thus becomes Equation (2.13).

W1 W2 W3 ... = argmaxWd1 Wd2 ...{P (Z|Wd1 Wd2 ...)P (Wd1 Wd2 ...)α}
(2.13)

In Equation (2.13) α is the language weight.

2. HMM-based Speech Recognition 29

2.6.3 Word Insertion Penalty

The insertion penalty decides how much penalty to apply to a new word
during the search. If new words are not penalized, the decoder would tend to
hypothesize the smallest words possible since every new word inserted leads
to an additional increase in the score of any path as a result of the inclusion
of the inserted word’s language probability from the language model.

In [Takeda et al., 1998] it is hypothesized that the Word Insertion Penalty
(WIP) compensates the probability given by a language model to the true
probability. This statement comes from the merit of combining acoustic
knowledge and language knowledge through stochastic modeling. According
to the general Bayes rule expressed in Equation (2.14), disregarding denom-
inator, a simple product of acoustic and linguistic probabilities gives a score
to word sequence hypotheses even if the acoustic and linguistic models are
estimated independently.

P (W |Z) =
P (Z|W)P (W)

P (Z)
(2.14)

However, in a real system balancing between acoustic and linguistic pa-
rameters the system’s performance needs to be optimized. The typical form
of combining the two probabilities is shown in Equation (2.15).

logP (Z|W) + αlogP (W)− nQ (2.15)

Equation (2.15) contains the parameters α, which represents the language
weight (LW) , Q represents the word insertion penalty (WIP) and n repre-
sents the number of words included in the sequence W . As is can be seen,
giving different values to these parameters can provide a solution for fine
tuning and optimization.

2.6.4 Performance Evaluation

The term accuracy indicates the percentage of words in the test set that
were correctly recognized. However, this is not a sufficient metric; it is pos-
sible to correctly hypothesize all the words in the test utterances merely by
hypothesizing a large number of words for each word in the test set. The

2. HMM-based Speech Recognition 30

spurious words, called insertions, must also be penalized when measuring
the performance of the system. The Word Error Rate (WER) indicates the
number of hypothesized words that were erronious as a percentage of the
actual number of words in the test set. This includes both words that were
wrongly hypothesized (or deleted) and words that were spuriously inserted.
Since the recognizer can, in principle, hypothesize many more spurious words
than there are words in the test set, the percentage of errors can actually be
greater than 100.

Stentence accuracy is a very important measure in tasks where absolutely
correct recognition is necessary, such as recognizing an identity or a credit
card number, or in machines with critical-outcome responses.

Studying the errors made in the recognition process often give an idea of
what might be done to improve recognition. Al least this tool provides an
additional degree of analysis of the system.

2.6.5 Livemode Decoding

The livemode decoder must be optimized in many ways with settings that
are very specific to a given machine and task in order to obtain good perfor-
mance results. This part obeys to the main goal aimed at this thesis and it
will be treated in more detail in the Practice Part of it.

Chapter 3

Sphinx-4: A Java ASR engine

In this chapter, the basics of this Speech Recognition engine are described,
focusing on the parts that are relevant to the development of Magnus.

3.1 Introduction

Sphinx-4 is a flexible, modular and pluggable framework to help foster
new innovations in the core research of Hidden Markov Model recognition
systems. This is the main description that the authors of Sphinx-4 give and
that is exactly what it is.

Sphinx-4 is a very flexible ASR system that has been programmed using
Java, which makes it very attractive to the development of applications for
any platform, say operating system, basically Microsoft Windows and Unix-
like systems. This is one the main points that support its choice for this
project. Since the Department of Education from Generalitat de Catalunya
uses GNU/Linux extensively, moreover, it has its own GNU/Linux distribu-
tion, named Linkat, it has been an excellent opportunity to test the software
on the most extended and supported free operating system in the world.

Sphinx-4 stands for one of the most complete, robust and stable speech
recognition systems nowadays. This state of the art framework includes many
different ways of resolving one single problem, which makes it very flexible
software able to be implemented on almost any situation, whether it is used
on an application for handicapped people, on a speech research laboratory

3. Sphinx-4: A Java ASR engine 32

or inside a car, the many possibilities that offers makes it very adaptive
for any environment. This is an advantage over HTK, which stands for
Hidden Markov Model Toolkit, one the most consolidated speech recognition
frameworks for university study. HTK has been programmed in C++ , which
is a disadvantage when having to export the produced software to a platform
different from the one used in development. In this way, since Sphinx-4 has
been programmed in Java, which is an interpreted language, not a compiled
one like C++, there’s no need to compile any code for a specific platform:
Java produces the named “bytecodes” which are then interpreted on any
machine (any platform) where a Java Virtual Machine (JVM) is available.

The Java platform also provides Sphinx-4 with a number of other advan-
tages:

• The rich set of platform APIs greatly reduces coding time.

• Built-in support for multithreading makes it simple to experiment with
distributing decoding tasks across multiple threads.

• Automatic garbage collection helps developers to concentrate on al-
gorithm development instead of memory leaks and dynamic memory
management chaos.

On the downside, the Java platform can have issues with memory foot-
print. Also related to memory, some speech engines will directly access the
platform memory directly in order to optimize the memory throughput dur-
ing decoding. Direct access to the platform memory model is not permitted
with the Java programming language. Despite of this, the Java platform has
given very good results in the development and performance of the speech
recognition application.

Anyway, HTK is also a very good speech recognition software, and since
it is older than Sphinx-4, it should be stated that the latter resembles the
first one in mode of operation and technical functionality, but by means of
portability and software innovation, Sphinx-4 is the chosen one for Magnus.
Moreover, the fact that Sphinx-4 is a younger project based on the for-
mer HTK may have helped its creators to improve any of the flaws that
HTK could have had before. More information about HTK is available in
[Young et al., 2006].

3. Sphinx-4: A Java ASR engine 33

And the advantage that it is also given as free software avoids the problem
of needing to develop an entire system from scratch, and by its modular and
pluggable implementation it incorporates design patterns from existing sys-
tems, with sufficient flexibility to support emerging areas of research interest,
such as the Digital Signal Processing or the Artificial Intelligence (AI).

On specialized press – literature it can be read that regarding functionality,
Sphinx-4 works equally well as another famous speech recognition system,
ViaVoice from IBM, which used to be open source as well, but now the project
has again been hidden from general public researchers. The advantage is
that Sphinx-4 is now free to be used and improved and that its working
environment is broadened because of the Java technology.

One last remark should be made, this time, concerning the free licence
world. Magnus is a platform independent free software application, because
it runs on a Java virtual machine, but the implementation of this virtual
machine may be not free. The development platform for Magnus has been
Linkat, version 2, the educational GNU/Linux distribution of the Govern-
ment of Catalonia, which by default uses the Sun Microsystems Java Virtual
Machine 1.5, which is not free software. But recently the specification of
the Java Virtual Machine has been released, and there exists a functional
free implementation, named IcedTea, which could be used instead in order
to make the whole application fully compliant with the free software terms
established by the Free Software Foundation. So, despite this thesis openly
refers to Java as if it was the only virtual available machine, basically be-
cause the Sphinx-4 documentation uses it extensively, it should be taken into
consideration the alternatives available that make Magnus a completely free
software application.

This chapter explains in detail the operating modus of the Sphinx-4 en-
gine, based on the Sphinx-4 Whitepaper and the Sphinx-4 Javadocs for the
different classes that compose the application. If more information is needed
please refer to [Gouvea et al., 2004].

3. Sphinx-4: A Java ASR engine 34

3.2 Framework – High Level Architecture

The Sphinx-4 framework has been designed with a high degree of flexibility
and modularity, since each element in the system can be easily replaced or
modified to test different module implementations without needing to modify
other parts of the system.

The modular nature of Sphinx-4 was enabled primarily by the use of the
Java programming language. In particular, the ability of the Java platform
to load code at run time permits simple support for the pluggable frame-
work, and the Java programming language construct of interfaces permits
separation of the framework design from the implementation.

Figure 3.1: Sphinx-4 framework

The result of such a modular design is illustrated in Figure 3.1. As it
can be seen, the high level architecture is relatively straightforward. From
the Application’s viewpoint, it puts the incoming signal data into the Input
buffer, adjusts the Control register and gets the results through the Result

3. Sphinx-4: A Java ASR engine 35

buffer. The Tools + Utilities module can also be used to obtain additional
features. The speech recognizer itself gets the input data, it processes it
through the several modules that compose its internal structure and drops
the results into the Result buffer for the Application to read.

There are three primary modules in the Sphinx-4 framework: the
FrontEnd, the Decoder and the Linguist. The FrontEnd takes the input
data from the digitized signal (gathering), sets the data boundaries (anno-
tating) and parameterizes it into a sequence of features (processing) to be
read by the Decoder. The annotations provided include the beggining and
ending of data segments and the operations performed include preemphasis,
noise-cancellation, automatic gain control, end pointing, Fourier analysis,
Mel spectrum filtering, cepstral extraction, etc.

The Linguist translates any type of standard language model, along with
pronunciation information from the Dictionary and structural information
from one or more sets of AcousticModels, into a SearchGraph. The Search-
Manager in the Decoder uses the features from the FrontEnd and the Search-
Graph from the Linguist to perform the actual decoding, generating Results.

At any time prior to or during the recognition process, the application can
issue Controls to each of the modules, effectively becoming a partner in the
recognition process. These events allow the application to monitor and fine
tune the decoding process.

The CongurationManager gives Sphinx-4 the ability to dynamically load
and configure modules at run time, yielding a flexible and pluggable system.

To give applications and developers the ability to track decoder statistics
such as word error rate, runtime speed, and memory usage, Sphinx-4 provides
a number of Tools. All these features, though, are not treated in this paper.
The statistics published by the Sphinx-4 original authors are taken directly
to get an orientation of the system’s behavior.

And finally, Sphinx-4 also provides an Utilities module that supports
application-level processing of recognition results, used to quantize the per-

3. Sphinx-4: A Java ASR engine 36

fomance of the system. These tools are treated in the “Regression Tests”
chapter in the Practice Part.

3.3 FrontEnd

The purpose of the FrontEnd is to parameterize an Input signal (i.e.,
speech) into a sequence of output Features. As illustrated in Figure 3.2, the
FrontEnd comprises one or more sequential chains of replaceable communi-
cating signal processing modules called DataProcessors. Supporting multiple
chains permits simultaneous computation of different types of parameters
from the same input signal. This enables the creation of systems that can
simultaneously decode using different parameter types.

Figure 3.2: Sphinx-4 FrontEnd

Each DataProcessor in the FrontEnd provides an input and an output that
can be connected to another DataProcessor, permitting arbitrarily long se-
quences of chains. The inputs and outputs of each DataProcessor are generic
Data objects that encapsulate processed input data as well as markers that
indicate data classification events such as end-points. The last DataProces-
sor in each chain is responsible for producing a Data object composed of
parameterized signals, called Features, to be used by the Decoder.

Sphinx-4 permits the ability to produce parallel sequences of features.
Sphinx-4 is unique, however, in that it allows for an arbitrary number of
parallel streams.

The communication between blocks follows a pull design. With a pull
design, a DataProcessor requests input from an earlier module only when
needed, as opposed to the more conventional push design, where a module
propagates its output to the succeeding module as soon as it is generated.

3. Sphinx-4: A Java ASR engine 37

This pull design enables the processors to perform buffering, allowing con-
sumers to look forwards or backwards in time.

Within the generic FrontEnd framework, Sphinx-4 provides a suite of Dat-
aProcessors that implement common signal processing techniques. These
implementations include support for the following: reading from a variety of
input formats for batch mode operation (e.g., extracting the spoken speech
from a previously recorded signal), reading from the system audio input de-
vice for live mode operation, preemphasis, windowing with a Raised Cosine
Transform (RCT), e.g., Hamming and Hanning windows, Discrete Fourier
Transform (DFT) via the Fast Fourier Transform (FFT), Mel Frequency
Filtering, Bark Frequency Warping, Discrete Cosine Transform (DCT), Lin-
ear Predictive Coding (LPC), end pointing, Cepstral Mean Normalization
(CMN), Mel Frequency Cepstral Coefficient extraction (MFCC) and Percep-
tual Linear Prediction (PLP) coefficient extraction.

Using the ConfigurationManager it is possible to chain the Sphinx-4 Dat-
aProcessors together in any manner as well as incorporate DataProcessor
implementations in any own design. As such, the modular and pluggable
nature of Sphinx-4 not only applies to the higher-level structure of Sphinx-4,
but also applies to the higher-level modules themselves (i.e., the FrontEnd
is a pluggable module, yet also consists of pluggable modules itself).

The ConfigurationManager consists basically of a source Extended Markup
Language (XML) format file, which contains all the needed information to
configure the system properly. The following subsections describe the specific
configuration applied to the Magnus FrontEnd.

3.3.1 microphone

A microphone captures audio data from the system’s underlying audio
input systems and converts these audio data into Data objects.

This microphone will attempt to obtain an audio device with the format
specified in the configuration file. If such device with a specific format cannot
be obtained, it will try to obtain a device with an audio format that has
a higher sampling rate than the configured sample rate, while the other

3. Sphinx-4: A Java ASR engine 38

parameters of the format (i.e., sample size, endianness, sign, and channel)
remain the same. If, again, no such device can be obtained, it flags an error.

There’s a configurable property for this peripheral that specifies whether
or not the microphone will release the audio between utterances. On certain
systems (GNU/Linux for one), closing and reopening the audio does not work
too well. For this reason, this property is set to false.

3.3.2 speechClassifier

This class implements a level tracking endpointer invented by Bent
Schmidt-Nielsen which can be referred to as [Schmidt-Nielsen et al., 2004].
This endpointer is composed of three main steps:

1. Classification of audio into speech and non-speech.

2. Inserting SPEECH START and SPEECH END signals around speech.

3. Removing non-speech regions.

The first step, classification of audio into speech and non-speech, uses Bent
Schmidt-Nielsen’s algorithm. Each time audio comes in, the average signal
level and the background noise level are updated, using the signal level of
the current audio. If the average signal level is greater than the background
noise level by a certain threshold value (configurable), then the current audio
is marked as speech. Otherwise, it is marked as non-speech. The threshold
value applied for Magnus is 13, which is an internal Sphinx-4 value that is
compared to the average signal level to determine if the current audio is
marked as speech or not. A lower threshold will make the endpointer more
sensitive, that is, mark more audio as speech. A higher threshold will make
the endpointer less sensitive, that is, mark less audio as speech.

The second and third step of this endpointer are documented in the classes
speechMarker and nonSpeechDataFilter.

3. Sphinx-4: A Java ASR engine 39

3.3.3 speechMarker

This class converts a stream of SpeechClassifiedData objects, marked as
speech and nonspeech, into the separate regions that are considered speech.
This is done by inserting SPEECH START and SPEECH END signals into
the stream.

The algorithm is always in one of two states: ‘in-speech’ and ‘out-of-
speech’. If ‘out-of-speech’, it will read in audio until it hits audio that is
speech. If more than ‘startSpeech’ amount of continuous speech is read, it
is considered that speech has started, and a SPEECH START is inserted at
‘speechLeader’ time before speech first started. The state of the algorithm
changes to ‘in-speech’.

Now consider the case when the algorithm is in ‘in-speech’ state. If it reads
an audio that is speech, it is outputted. If the audio is non-speech, it is read
ahead until ‘endSilence’ amount of continuous non-speech is acquired. At
the point it is considered that speech has ended. A SPEECH END signal
is inserted at ‘speechTrailer’ time (for Magnus it has been experimentally
set to 50, which represents the amount of time in milliseconds after speech
ends to be included as speech data) after the first non-speech audio. The
algorithm returns to ‘out-of-speech’ state. If any speech audio is encountered
in between, the accounting starts all over again.

3.3.4 nonSpeechDataFilter

Given a sequence of Data, this class filters out the non-speech regions.
The sequence of Data should have the speech and non-speech regions marked
out by the SpeechStartSignal and SpeechEndSignal, using the speechMarker
class. Such a sequence of Data for an utterance should look like one of the
following two cases:

Case 1: Only one speech region

In the first case, illustrated in Figure 3.3 as a continuous time hap-
pening, the data stream has only one speech region.

3. Sphinx-4: A Java ASR engine 40

Figure 3.3: A data stream with only one speech region

After filtering, the non-speech regions are removed, and the data stream
becomes Figure 3.4 with only on speech region after filtering.

Figure 3.4: A data stream with only one speech region after filtering

Case 2: Multiple speech regions

The example of a data stream with two speech regions, Figure 3.5, is
used to illustrate the case of a data stream with multiple speech regions.

Figure 3.5: A data stream with two speech regions

This case is more complicated than the one with a single speech region. The
property mergeSpeechSegments is very important for controlling the behav-
ior of this filter. This property determines whether individual speech regions

3. Sphinx-4: A Java ASR engine 41

(and the non-speech regions between them) in an utterance should be merged
into one big region, or whether the individual speech regions should be con-
verted into individual utterances. If mergeSpeechSegments is set to true, all
the Data from the first SpeechStartSignal to the last SpeechEndSignal will
be considered as one Utterance, enclosed by a pair of SpeechStartSignal and
SpeechEndSignal (which itself becomes enclosed by a pair of DataStartSignal
and DataEndSignal). All non-speech regions are removed from the stream.
This gives Figure 3.6.

Figure 3.6: A data stream with two speech regions after filtering, when
mergeSpeechSegments is set to true

On the other hand, if mergeSpeechSegments is set to false (the default),
then each speech region will become an independent data stream. Pictorially,
the data stream with two speech regions becomes Figure 3.7.

Figure 3.7: A data stream with two speech regions after filtering, when
mergeSpeechSegments is set to false

3.3.5 preemphasizer

This class implements a high-pass filter that compensates for attenuation
in the audio data. Speech signals have an attenuation (a decrease in intensity
of a signal) of 20 dB/dec. It increases the relative magnitude of the higher

3. Sphinx-4: A Java ASR engine 42

frequencies with respect to the lower frequencies because they usually contain
much less energy, even though they are still important for speech recognition.

The preemphasizer takes a Data object that usually represents audio data
as input, and outputs the same Data object, but with preemphasis applied.
For each value X[i] in the input Data object X, the Equation (3.1) is applied
to obtain the output Data object Y , where i denotes the discrete time.

Y [i] = X[i]− α(X[i− 1]) (3.1)

A common value for the preemphasis factor (α) is something around 0.97.

3.3.6 windower

This class slices up a Data object into a number of overlapping windows
(usually referred to as “frames”). In order to minimize the signal discontinu-
ities at the boundaries of each frame, each frame is multiplied with a raised
cosine windowing function. Moreover, the system uses overlapping windows
to capture information that may occur at the window boundaries. These
events would not be well represented if the windows were simply juxtaposed.

The number of resulting windows depends on the window size and the
window shift (commonly known as “frame shift”). Figure 3.8 shows the
relationship between the original data stream, the window size, the window
shift, and the windows returned.

The raised cosine windowing function is applied to each window. Since a
window is returned, and multiple windows are created for each Data object,
this is a one-to-many processor. Also note that the returned windows should
have the same number of data points as the windowing function.

The applied windowing function, W [n], of length N (the window size), is
given by Equation (3.2).

W [n] = (1− a)−
(
a · cos

(
2πn

N − 1

))
(3.2)

In Equation (3.2) ‘a’ is commonly known as the alpha value. For a value
of 0.46 it results in a window named Hamming window. A value of 0.5 results

3. Sphinx-4: A Java ASR engine 43

Figure 3.8: Relationship between original data, window size, window shift,
and the windows returned

in the Hanning window. And a value of 0 results in the Rectangular window.
The default for this system is the Hamming window, shown in Figure 3.9
with its corresponding spectral diagram. Using the default window size of
25.625ms and assuming a sample rate of 16kHz it yields 410 samples per
window.

Figure 3.9: The Hamming window function with its corresponding spectral
diagram

3. Sphinx-4: A Java ASR engine 44

Two important features that define a windowing function (extracted from
its spectral analysis) are the leakage (Lk), which is the dynamic range, thus
the difference between the zero frequency magnitude of the spectral function
and the magnitude of the main lobe, and the resolution (TWML), which
is the frequency width of the central lobe. In the case of the Hamming
window function, the Lk is 43dB and the TWML is 4π

N
= 0.0306 radians (N

corresponds to the number of points taken for the window).

3.3.7 fft (Fast Fourier Transform)

This class computes the Discrete Fourier Transform (DFT) of an input
sequence, using the Fast Fourier Transform (FFT) algorithm. The Fourier
Transform (FT) is the process of analyzing a signal by its frequency com-
ponents. The DFT is the discrete representation of the general FT and the
FFT is an optimized algorithm, in terms of computational load and process-
ing time, for sequences which length corresponds to a power of two.

As indicated in previous paragraphs, speech is analyzed at a constant frame
rate by a window function. This window is the product of applying a sliding
Hamming window to the signal. Moreover, since the amplitude is a lot more
important than the phase for speech recognition, this class returns the power
spectrum of a window of data instead of the complex spectrum. Each value
in the returned spectrum represents the strength of that particular frequency
for that window of data.

By default, the number of FFT points is the closest power of 2 that is equal
to or larger than the number of samples in the incoming window of data. The
length of the returned power spectrum is the number of FFT points, divided
by 2, plus 1. Since the input signal is real, the FFT is symmetric, and the
information contained in the whole vector is already present in its first half.

3.3.8 melFilterBank

The Mel frequency Filter Bank class filters an input power spectrum
through a bank of a certain number of mel-filters. The output is an array
of filtered values, typically called mel-spectrum, each corresponding to the
result of filtering the input spectrum through an individual filter. Therefore,
the length of the output array is equal to the number of filters created.

3. Sphinx-4: A Java ASR engine 45

The triangular mel-filters in the filter bank are placed in the frequency
axis so that each filter’s center frequency follows the mel scale, in such a
way that the filter bank mimics the critical band, which represents different
perceptual effects at different frequency bands. Additionally, the edges are
placed so that they coincide with the center frequencies in adjacent filters.
Pictorially, the filter bank looks like Figure 3.10.

Figure 3.10: A Mel-filter bank

As it can be noticed in Figure 3.10, the distance at the base from the
center to the left edge is different from the center to the right edge. Since
the center frequencies follow the mel-frequency scale, which is a non-linear
scale that models the non-linear human hearing behavior, the mel filter bank
corresponds to a warping of the frequency axis. As can be inferred from
the figure, filtering with the mel scale emphasizes the lower frequencies. A
common model for the relation between frequencies in mel and linear scales
is shown in Equation (3.3).

melFrequency = 2595 · log
(

1 +
linearFrequency

700

)
(3.3)

The constants that define the filterbank are the number of filters, the mini-
mum frequency, and the maximum frequency, which determine the frequency
range spanned by the filterbank.

These frequencies depend on the channel and the sampling frequency that
you are using. For clean speech, the minimum frequency should be higher
than about 100Hz, since there is no speech information below it. Further-
more, by setting the minimum frequency above 50/60Hz, we get rid of the
hum resulting from the AC power, if present.

3. Sphinx-4: A Java ASR engine 46

The maximum frequency has to be lower than the Nyquist frequency, that
is, half the sampling rate. Furthermore, there is not much information above
6800Hz that can be used for improving separation between models. Partic-
ularly for very noisy channels, maximum frequency of around 5000Hz may
help cut off the noise. Typical values for the constants that define the filter
bank are shown in Table 3.1.

Table 3.1: Values for the constants that characterize the filter bank

Constants name Value
Sample Rate (Hz) 16000
numberFilters 40
minimumFrequency (Hz) 130
maximumFrequency (Hz) 6800

Davis and Mermelstein showed that Mel-frequency cepstral coefficients
present robust characteristics that are good for speech recognition. For de-
tails, see [Davis and Mermelstein, 1980].

3.3.9 dct

This class applies a logarithm and then a Discrete Cosine Transform (DCT)
to the input data, which is normally the mel spectrum obtained by the pre-
vious module. It has been proven that, for a sequence of real numbers, the
discrete cosine transform is equivalent to the Discrete Fourier Transform.
Therefore, this class corresponds to the last stage of converting a signal to
cepstra, defined as the inverse Fourier Transform of the logarithm of the
Fourier Transform of a signal. The dimensionalities of the coefficients that
are actually returned are defaulted to be 13. When the input is mel-spectrum,
the vector returned is the MFCC (Mel-Frequency Cepstral Coefficient) vec-
tor, where the 0-th element is the energy value.

3.3.10 liveCMN

This class subtracts the mean from all the input Data objects. CMN stands
for Cepstral Mean Normalization. It does not read in the entire stream

3. Sphinx-4: A Java ASR engine 47

of Data objects before it calculates the mean, but it estimates the mean
from previous windows and subtracts it from the Data objects on the fly.
Therefore, there is no delay introduced by liveCMN.

The Sphinx-4 properties that affect this processor are defined by the initial
cepstral mean which is set to 12, the liveCMN window size which is set to
100 and the CMN shifting window, which specifies how many cepstrum after
which the cepstral mean is recalculated, and is set to 160, which again is an
internal value not bound to any specific unit.

cmnWindow

cmnWindow + number of frames since the last recalculation
(3.4)

The mean of all the input cepstrum calculated up to a moment is not
reestimated for each cepstrum. This mean is recalculated after every CMN
shifting window cepstra, and estimated by dividing the sum of all input cep-
strum already processed. After obtaining the mean, the sum is exponentially
decayed by multiplying it by the ratio given by Equation (3.4).

3.3.11 featureExtraction

This process is charged to the DeltasFeatureExtractor class which com-
putes the delta and double delta of input cepstrum (or plp or ...). The
delta is the first order derivative and the double delta (a.k.a. delta delta) is
the second order derivative of the original cepstrum. They help model the
speech signal dynamics (i.e. velocity and acceleration). The output data is a
FloatData object with a float array of size three times the original cepstrum,
formed by the concatenation of cepstra, delta cepstra and double delta cep-
stra. The output is the features vector used by the decoder. Figure 3.11
shows the arrangement of the output features data array.

Figure 3.11: Layout of the returned features

3. Sphinx-4: A Java ASR engine 48

Suppose that the original cepstrum has a length of N , then the first N
elements of the feature are just the original cepstrum, the second N elements
are the delta of the cepstrum, and the last N elements are the double delta
of the cepstrum.

Figure 3.12 below shows pictorially the computation of the delta and dou-
ble delta of a cepstrum vector, using the last 3 cepstra and the next 3 cepstra

Figure 3.12: Delta and double delta vector computation

Referring to Figure 3.12, the delta is computed by subtracting the cepstrum
that is two frames behind of the current cepstrum from the cepstrum that is
two frames ahead of the current cepstrum. The computation of the double
delta is similar. It is computed by subtracting the delta cepstrum one time
frame behind from the delta cepstrum one time frame ahead. Replacing delta
cepstra with cepstra, this works out to a formula involving the cepstra that
are one and three behind and after the current cepstrum.

3.4 Linguist

The Linguist generates the SearchGraph that is used by the Decoder dur-
ing the search, while at the same time hiding the complexities involved in
generating this graph.

3. Sphinx-4: A Java ASR engine 49

A typical Linguist implementation constructs the SearchGraph using the
language structure as represented by a given LanguageModel and the topo-
logical structure of the AcousticModel (HMMs for the basic sound units used
by the system). The Linguist may also use a Dictionary (typically a pronun-
ciation lexicon) to map words from the LanguageModel into sequences of
AcousticModel elements. When generating the SearchGraph, the Linguist
may also incorporate sub-word units with contexts of arbitrary length, if
provided.

Sphinx-4 provides an implementation of the Linguist that statically rep-
resents the search space as a flat graph, where each word in the vocabulary
has its own branch, and its name is the FlatLinguist class. The FlatLin-
guist takes a grammar graph (as returned by the underlying, configurable
grammar), and generates a search graph for this grammar.

3.4.1 LanguageModel

The LanguageModel module of the Linguist provides word-level language
structure, which can be represented by any number of pluggable implemen-
tations. These implementations typically fall into one of two categories:
graph-driven grammars and stochastic N-Gram models. The graph-driven
grammar represents a directed word graph where each node represents a sin-
gle word and each arc represents the probability of a word transition taking
place. The stochastic N-Gram models provide probabilities for words given
the observation of the previous n− 1 words.

The format used for the implementation of the LanguageModel for Magnus
is the JSGFGrammar. This format supports the Java Speech API Gram-
mar Format (JSGF), which defines a BNF-style (Backus-Naur Form style)
context-free, platform-independent and vendor-independent Unicode repre-
sentation of grammars. This is a formal way to describe formal languages.
Refer to [Knuth, 1964] for more details about the BNF-style.

3.4.2 Dictionary

The Dictionary provides pronunications for words found in the Language-
Model. The pronunciations break words into sequences of sub-word units

3. Sphinx-4: A Java ASR engine 50

found in the AcousticModel. The Dictionary interface also supports the
classication of words and allows for a single word to be in multiple classes.

Sphinx-4 currently provides implementions of the Dictionary interface to
support the CMU Pronouncing Dictionary. The FullDictionary class used in
Magnus creates a dictionary by reading in an ASCII-based Sphinx-3 format
dictionary. Each line of the dictionary specifies the word, followed by spaces
or tab and the pronuncation (by way of the list of phones) of the word. Each
word can have more than one pronunciation. For example, as it appears in
the Sphinx-4 Javadoc, a digits dictionary would look like:

ONE HH W AH N

ONE(2) W AH N

TWO T UW

THREE TH R IY

FOUR F AO R

FIVE F AY V

SIX S IH K S

SEVEN S EH V AH N

EIGHT EY T

NINE N AY N

ZERO Z IH R OW

ZERO(2) Z IY R OW

OH OW

In the example, the words “one” and “zero” have two pronunciation tran-
scriptions each.

This dictionary will read in all the words and its pronunciation(s) at
startup. Therefore, if the dictionary is big, it will take longer to load and
will consume more memory.

3.4.3 AcousticModel

The AcousticModel module provides a mapping between a unit of speech
and a HMM that can be scored against incoming features provided by the
FrontEnd. As with other systems, the mapping may also take contextual

3. Sphinx-4: A Java ASR engine 51

and word position information into account. For example, in the case of
triphones, the context represents the single phonemes to the left and to the
right of the given phoneme, and the word position represents whether the
triphone is at the beginning, middle, or end of a word (or is a word itself).
The contextual definition is not fixed by Sphinx-4, allowing for the definition
of AcousticModels that contain allophones as well as AcousticModels whose
contexts do not need to be adjacent to the unit.

Typically, the Linguist breaks each word in the active vocabulary into a
sequence of context-dependent sub-word units. The Linguist then passes the
units and their contexts to the AcousticModel, retrieving the HMM graphs
associated with those units. It then uses these HMM graphs in conjunction
with the LanguageModel to construct the SearchGraph.

Unlike most speech recognition systems, which represent the HMM graphs
as a fixed structure in memory, the Sphinx-4 HMM is merely a directed graph
of objects. In this graph, each node corresponds to an HMM state and each
arc represents the probability of transitioning from one state to another in
the HMM. By representing the HMM as a directed graph of objects instead of
a fixed structure, an implementation of the AcousticModel can easily supply
HMMs with different topologies. For example, the AcousticModel interfaces
do not restrict the HMMs in terms of the number of states, the number
or transitions out of any state, or the direction of a transition (forward or
backward). Furthermore, Sphinx-4 allows the number of states in an HMM
to vary from one unit to another in the same AcousticModel.

Each HMM state is capable of producing a score from an observed feature.
The actual code for computing the score is done by the HMM state itself,
thus hiding its implementation from the rest of the system. The Acoustic-
Model also allows sharing of various components at all levels. That is, the
components that make up a particular HMM state such as Gaussian mix-
tures, transition matrices and mixture weights can be shared by any of the
HMM states to a very fine degree (this was previously referred to as senones).

The acoustic models used in Magnus have been extracted from the Wall
Street Journal articles. The structure of the features used follows the con-
struction “Cepstra + Delta + DoubleDelta”, resulting in a vector of 39 coef-

3. Sphinx-4: A Java ASR engine 52

ficients as discussed in the featureExtraction subsection above, using a sam-
pling frequency of 16KHz, 40 mel filters and a frequency range between 130Hz
to 6800Hz.

3.4.4 SearchGraph

No matter how the Linguist may be implemented, the search spaces are
all represented as a SearchGraph. Illustraded in Figure 3.13, the Search-
Graph is the primary data structure used during the decoding process. It
is composed of optionally emitting SearchStates and SearchStateArcs with
transition probabilities. Each state in the graph can represent components
from the LanguageModel (words in rectangles), Dictionary (sub-word units
in dark circles) or AcousticModel (HMMs).

Figure 3.13: Example SearchGraph

The SearchGraph is a directed graph in which each node, called a Search-
State, represents either an emitting or a non-emitting state. Emitting states
can be scored against incoming acoustic features while non-emitting states
are generally used to represent higher-level linguistic constructs such as words
and phonemes that are not directly scored against the incoming features. The
arcs between states represent the possible state transitions, each of which has
a probability representing the likelihood of transitioning along the arc.

The SearchGraph interface is purposely generic to allow for a wide range
of implementation choices, relieving the assumptions and hard-wired con-
straints found in previous recognition systems. In particular, the Linguist
places no inherent restrictions on the following:

3. Sphinx-4: A Java ASR engine 53

• Overall search space topology.

• Phonetic context size.

• Type of grammar (stochastic or rule based).

• N-Gram language model depth.

A key feature of the SearchGraph is that the implementation of the Search-
State need not be fixed. As such, each Linguist implementation typically
provides its own concrete implementation of the SearchState that can vary
based upon the characteristics of the particular Linguist. For instance, a
simple Linguist, like the FlatLinguist used in Magnus, may provide an in-
memory SearchGraph where each SearchState is simply a one-to-one map-
ping onto the nodes of the in-memory graph. On the other hand, a Linguist
representing a very large and complex vocabulary, however, may build a com-
pact internal representation of the SearchGraph and dynamically expand this
compact representation on demand. The choice between static and dynamic
construction of language HMMs depends mainly on the vocabulary size, lan-
guage model complexity and desired memory footprint of the system.

The FlatLinguist is appropriate for recognition tasks that use context-free
grammars (CFG) ,a.k.a. Phrase Structure Grammars, like the Backus-Naur
form used in the JSGFGrammar. It generates the SearchGraph directly from
this internal Grammar graph, storing the entire SearchGraph in memory. As
such, the FlatLinguist is very fast, yet has difficulties in handling grammars
with high branching factors.

3.5 Decoder

The primary role of the Sphinx-4 Decoder block is to use the Features
from the FrontEnd in conjunction with the SearchGraph from the Linguist
to generate Result hypotheses. The Decoder block comprises a pluggable
SearchManager and other supporting code that simplifies the decoding pro-
cess for an application. As such, the most interesting component of the
Decoder block is the SearchManager.

3. Sphinx-4: A Java ASR engine 54

The Decoder merely tells the SearchManager to recognize a set of Feature
frames. At each step of the process, the SearchManager creates a Result
object that contains all the paths that have reached a final non-emitting state.
To process the result, Sphinx-4 also provides utilities capable of producing a
lattice and confidence scores from the Result.

Like the Linguist, the SearchManager is not restricted to any particu-
lar implementation. For example, implementations of the SearchManager
may perform search algorithms such as frame-synchronous Viterbi, A*, bi-
directional, and so on. Magnus makes use of the SimpleBreadthFirstSearch-
Manager class, which performs a Breadth First Search (BFS) strategy on
the graph generated with the possible state transitions, beginning at the
root node and exporing all the neighboring nodes in a top-down hierachial
manner. This frame synchronous Viterbi search is called on each frame.

The SearchManager implementation uses a token passing algorithm as de-
scribed in [Young et al., 1989]. A Sphinx-4 token is an object that is as-
sociated with a SearchState and contains the overall acoustic and language
scores of the path at a given point, a reference to the SearchState, a reference
to an input Feature frame, and other relevant information. The SearchState
reference allows the SearchManager to relate a token to its state output distri-
bution, context-dependent phonetic unit, pronunciation, word and grammar
state. Every partial hypothesis terminates in an active token.

As it is a common technique Sphinx-4 provides a sub-framework to sup-
port the SearchManager composed of an ActiveList, a Pruner and a Scorer.
The SearchManager sub-framework generates ActiveLists from currently ac-
tive tokens in the search trellis by pruning using a Pruner. In Magnus the
ActiveLists, maintained as sorted lists, are managed with the PartitionAc-
tiveListFactory class.

The implementation of the Pruner is greatly simplifed by the garbage
collector of the Java platform. With the garbage collection, the Pruner can
prune a complete path by merely removing the terminal token of the path
from the ActiveList. The act of removing the terminal token identifies the
token and any unshared tokens for that path as unused, allowing the garbage

3. Sphinx-4: A Java ASR engine 55

collector to reclaim the associated memory. In Magnus, the class in charge
of this process is named SimplePruner.

The SearchManager sub-framework also communicates with the Scorer, a
state probability estimation module that provides state output density values
on demand. When the SearchManager requests a score for a given state at a
given time, the Scorer accesses the features vector for that time and performs
the mathematical operations to compute the score. The Scorer retains the in-
formation pertaining to the state output densities. Thus, the SearchManager
need not know whether the scoring is done with continuous, semi-continuous
or discrete HMMs. Furthermore, the probability density function of each
HMM state is isolated in the same fashion. Any heuristic algorithms incor-
porated into the scoring procedure for speeding it up can also be performed
locally within the scorer. In addition, the scorer can take advantage of mul-
tiple CPUs if they are available. The ThreadedAcousticScorer is the name
of the class that implements the acoustic scorer in Magnus.

Chapter 4

Speech Enhancement

This chapter presents the speech enhancement method applied to Magnus.

[Shankar Chanda and Park, 2007] provide a proposal which has been taken
as baseline for this project. Refer to this article for further details.

4.1 Introduction

Due to the variety of environments where Magnus may be launched there
is the need of developing a system to provide a degree of ensurance of the
performance of the application. Such performance, say intelligibility of the
spoken words, is degraded as a function of the ambient noise where the
program is immersed.

In order to improve its functioning [Shankar Chanda and Park, 2007] pro-
pose a low complexity system to increase the intelligibility of far-end clean
speech signal to a listener who is located in such environment. Intelligibility
of the spoken words is generally associated with the formant structure of
speech signal.

We start from the hypothesis that the environment contains moderate or
high level of noise. To mitigate the problem of degradation of the intel-
ligibility of the spoken words by the ambient noise, a common practice is
the increase of the power of speech towards a greater Signal to Noise Ratio

4. Speech Enhancement 57

(SNR). However, increasing speech power often causes discomfort and lis-
tening fatigue to the listener, especially when the speech power has to be
raised to a favorable SNR in presence of heavy ambient noise. Then in such
scenarios the enhancement of the perceptual features of the spoken words
related with speech intelligibility are called.

Experimental results referenced in the article indicate that the first formant
alone is a very minor contributor to the intelligibility of speech, whereas a
strong correlation is observed between the intelligibility of speech and the
second formant frequency. It is also known that the consonants play more
significant role compared to the vowels in carrying the speech intelligibility
cues even though the consonants are significantly weaker than vowels in pho-
netic power. As consonants carry less phonetic power, they are more prone to
be affected by noise when speech is reproduced in an environment with mod-
erate or high ambient noise level. The different frequency bands in speech
contribute differently to the intelligibility of the spoken words. Frequency
range from 1.5 KHz to 3.5 KHz has more contribution in the intelligibility
of the spoken words compared to the rest of the speech spectrum. This data
makes sense compared to the frequencies of the first vocal formants given by
[Fant, 1970] and shown in Table 4.1.

Table 4.1: Frequential limits of the vocal formants

Formant f1 f2

[a] 750 1300
[e] 500 1800
[i] 300 2000
[o] 500 1000
[u] 300 700

In literature different speech intelligibility enhancement techniques have
been proposed based on the enhancement of the perceptual cues that are
associated with the intelligibility of the spoken words, but many of these sys-
tems involve high computational and storage complexity that often preclude
their implementation on resource limited platforms. This can be particularly

4. Speech Enhancement 58

attributed to the speech enhancement systems that are based on analysis
of the spectral components of input speech in frequency domain and selec-
tive enhancement of a subset of these frequency components. It is desirable
that while increasing the intelligibility of speech the enhancement system
should preserve the clarity of the input speech. The intelligibility should be
enhanced with minimal introduction of audible processing artifacts.

[Shankar Chanda and Park, 2007] propose a low-complexity approach to
enhance the intelligibility of speech amenable for implementation in resource-
constrained platforms. In this proposal, the consonants of the speech signal
are enhanced by processing the input speech using a tunable band-pass shelv-
ing filter whose cutoff frequency is dynamically adjusted. The proposed sys-
tem preserves the speech clarity well without introducing audible distortions.
Excess sibilant levels are sometimes produced due the boost in the high fre-
quency region of the unvoiced fricatives. To mitigate this problem a vocal
de-esser is used in conjunction with the speech enhancement unit.

Finally, one last remark should be made about the article and its relation
with Magnus. The speech enhancement system proposed in the paper works
on the output channel of the system, thus offering an improved, enhanced,
speech with repect to the input speech, but the speech enhancement unit
used in this project works on the input channel, thus offering an enhanced
speech to the system in order to obtain better recognition results, especially
when the environment conditions are not favorable.

4.2 Speech intelligibility enhancement sys-

tem

A block diagram of the proposed system is shown in Figure 4.1 as illus-
trated in the referenced article.

The input speech is filtered by a high pass shelving filter whose cut-off
frequency is adjusted dynamically so that the level of the output speech is
approximately equal to the level of the input speech. The shelving filter is
having a gain greater than unity in the high frequency range whereas in the
low frequency range the gain of the shelving filter is less than unity.

4. Speech Enhancement 59

Figure 4.1: The proposed speech intelligibility enhancement system

According to the frequential particularities that exist within the transitions
from a vowel to a consonant and vice versa the system responds consequently
reshaping the input high-pass shelving filter so that the power of the conso-
nants is boosted, resulting in an increase of the intelligibility of the speech.
Vowels carry a higher energy level compared to consonants and are frequen-
tially located in the lower part of the spectre. This justifies the use of the
high-pass filter with a slight boost at the highest part of the frequential axis
(and also a slight attenuation at the lowest part). The parameter that is
continuously readjusted is the cut-off frequency of this filter according to
the difference between the power of the plain input speech signal and the
power of the filtered speech. In 4.1 the block in charge of the adjustement is
the APF parameter estimation and the Level detection modules compute the
power (RMS) of the input and output signals.

This difference is then mapped to a new desired cut-off frequency indi-
cated by the Lookup table module and finally the APF parameter estimation
module establishes a smooth transition over time obtained with a predefined
controller. This transition is shown as a coefficients vector which is then used
to dynamically tune the filter while filtering the speech signal at the same
time.

4. Speech Enhancement 60

The idea is to keep the input speech level equal to the filtered speech level.
If this statement is verified, the consonant sounds should be boosted and
thus, the intelligibility of the speech enhanced. In order to accomplish this
purpose the cut-off frequency of the tunable shelving filter is changed in such
a way that there is an upper-limit beyond which the cut-off frequency is not
moved even if the output speech level is grater than the input speech level.
As a result in case of most of the consonants the equality between the input
speech level and output speech level is not satisfied and the consonants get
a boost in their phonetic power.

The module in the middle of Figure 4.1 consists of a low-pass second order
shelving filter with a cut-off frequency of 6KHz. This filter reduces the excess
boost of high frequency components beyond its cut-off frequency produced
in the previos module.

As it is referenced in [Shankar Chanda and Park, 2007], from exprerimen-
tal results it is observed that the proposed enhancement system sometimes
produced excess sibilant levels. A sibilant level is the “ess” vocal sound that
is generated while producing unvoiced fricatives such as the ‘s’ in ‘sound’.
A sibilant is characterized by its predominantly high frequency content that
has a sharp amplitude peak. Most of the energies of the sibilant vocals are
located above 2KHz.

To mitigate the problem of excess sibilant levels a third module is attached
in the signal processing chain as shown in Figure 4.1: a vocal de-esser. In this
unit, the input speech is split into high and low frequency components using
a second-order low-pass shelving filter with cut-off frequency around 2KHz.
When the ratio between the RMS level of the high pass band frequency
content and the RMS level of the low-pass band frequency content exceeds a
certain threshold a decision is taken in favor of the sibilant and the de-esser
gain is reduced from unity to a lower value using a predetermined release time
constant. When non-sibilant vocal appears at the input of the de-esser the
gain is increased towards unity with a predetermined attack time constant.

4. Speech Enhancement 61

4.3 Real-Time Implementation

In the article tunable high-pass shelving filter HSH(z) is implemented using
an all-pass filter A(z), leading to a low-sensitivity realization robust to the
coefficient quantization. It is shown in Figure 4.1 that HSH(z) has a gain G0

at zero frequency and a gain Gπ at high frequency range. Equation 4.1 and
Equation 4.2 refer to the implementation of HSH(z).

A(z) =
α− z−1

1− αz−1
(4.1)

HSH(z) =
Gπ

2
(1 + A(z)) +

G0

2
(1− A(z)) (4.2)

The 3dB cut-off frequency ωc of the filter is given by Equation 4.3.

ωc = cos−1
(

2α

1 + α2

)
(4.3)

In this implementation the cut-off frequency and the filter gain can be
changed independently of each other permitting an easy tuning of the sys-
tem. For different values of ωc, the corresponding values of the all-pass filter
parameter α are stored in a lookup table. The estimated cut-off frequency
of the shelving filter is proportional to the difference between the output
speech level and the input speech level. Finally, the parameters G0 and Gπ

are experimentally determined.

Part II

Practice

Chapter 5

Architecture, main components
and software distributions

This chapter presents the serveral modules that compose the application
and the way they interact altogether to obtain good speech recognition re-
sults.

5.1 Architecture

As Sphinx-4 is an incredibly modular application, Magnus, which is based
on Sphinx-4, has followed up becoming a pluggable modular application too.
This degree of freedom in the clear definition of the various components
of the system is attributed to the possibilities that the Java programming
language offers. Following the way Sphinx-4 is designed, Magnus has taken
a lot of advantage from this characteristic. From all these features, the
degree of modularity is obtained through the use of the Java interfaces and
the pluggable advantage is obtained from the advanced configuration system
that Sphinx-4 uses.

In the first place, it is important to note the difference between the two
main approaches developed in this project: on one hand, the base application
itself, on the other hand, the Sphinx-4 extensions that provide an enhanced
speech recognition system. In order to explain and show them, Figure 5.1 is
provided. Figure 5.1 represents both approaches with the main blocks that
represent the main processes of each approach.

5. Architecture, main components and software distributions 64

Figure 5.1: Magnus architecture and main components.

As it can be seen in Figure 5.1, the block at the top left corner of the figure,
named Magnus, corresponds to the main process of the application, a well
defined and sequential process. At this point, the two main approaches of the
development of the project are clear: on the right han side of the figure the
part that interacts with the speech recognition engine is shown, and below,
the part corresponding to the interface and its usability.

5.2 Main components

Once the main parts of Magnus have been described let’s focus on each of
the components that build up the whole system.

5.2.1 User interface

This is the main input channel the users use to interact with the program.
Moreover, the user interface is constituted by all the different components
that enable Magnus to show signs of activity. This interface is basically
graphical, so its is rather said to be a Graphical User Interface (GUI) al-
though the application also sends several text messages to the standard out-

5. Architecture, main components and software distributions 65

put of the system, say the screen. This standard output collects information
messages as well as error messages, for what it is, to some extent, a more im-
portant means of system commmunication. Anyway, the aim of the project
is to get Magnus running on as many platforms as possible, for what the GUI
will be enough for the majority of users.

All the screens are launched originally by the Magnus class, which holds
the main thread of the program. In Figure 5.1 all the screens and panels have
been grouped into the GUI block. The several classes that integrate this box
are implemented using the Abstract Window Toolkit (AWT) library except
the JProgressBar class. They are all described below:

MyScreen This is the first screen shown by the application and it is created
during its initialization. It shows the loading messages. This screen is
launched by the Magnus class.

MyMenu This is the configurable menu that represents the main interface
of Magnus. It is shown all the time the mouse pointer is quiet and dis-
plays the actions that the user is allowed to perform: moving upwards,
downwards, leftwards, rightwards, clicking, dragging, opening a menu,
switching from the mouse peripheral to the keyboard peripheral... This
class also permits the customization of the look-and-feel of the program
and automatically saves it on the user’s computer when the application
is closed, also loading it automatically whenever the user launches the
program again. This menu is controlled by the Magnus class.

ConfigScreen This screen can be accessed through the MyMenu class and
leads to a new screen where the background color and the size of the
menu can be customized.

MyPanelLabels This is a support class for MyMenu which provides a panel
with the labels of the different allowed actions.

MyPanelImages This is a support class for MyMenu that provides a panel
with the images associated to the actions that are allowed to perform.

JProgressBar This is the only component that does not belong to the AWT
library, but to the SWING library. It is normally used to provide a
feedback of the loading progress of an application, but in Magnus it is

5. Architecture, main components and software distributions 66

used as a vumeter, so to provide a feedback of the input voice signal
level.

VUMeterThread This thread receives the input signal from the speech
recognition engine and sets the JProgressBar accordingly so as to pro-
vide an activity feedback indicator. The Sphinx-4 Microphone class
has slightly been modified/hacked so as to work along with this class.

Apart from the GUI, Magnus also makes use of the MouseControl class,
which emulates a virtual mouse peripheral and a virtual keyboard peripheral.
The acceleration of the virtual mouse pointer that Magnus controls is set by
the MyMenu class through the ConfigScreen by setting a variable class of the
MouseControl instance used by Magnus.

5.2.2 Sphinx-4 interaction

The interaction with the speech recognition engine is achieved through a
thread. A thread is a different program flow that interacts with another flow
(the main program flow) in a cooperative way. From the processor’s point
of view, or in the case of this thesis the Java Virtual Machine, a thread is
a process that runs in parallel with the main application and interacts with
it in such an exclusive way that it should not interfere, but in fact, it could
interfere if the exclusion mechanism was inappropriate. Then, the parallelism
is yielded to the processor (the operating system or the JVM) rather than to
the software. Instead of emulating a parallel single process, with a thread,
many processes request processor time as they are all instantiated in the
kernel process scheduler. In the case of multiple processors, a true parallel
execution is possible.

Magnus has a class named RecognizerThread, which is indeed a thread,
that provides the interface between the main application and Sphinx-4, which
is again launched in another thread. The communication mechanism is ob-
tained through the use of a register and a flag. The RecognizerThread issues
Sphinx-4 for new recognition results, and once they are ready, it loads the
register (speechresult) with it and sets the flag (resultready) in order to alert
Magnus to the new spoken command.

5. Architecture, main components and software distributions 67

This class is also responsible for adapting the configuration files for Sphinx-
4 to the user’s computer, because this program needs to access the config-
uration files from the user’s file system. This would be no problem if the
application was to be launched always from the distributed binary packages,
but if the Java Web Start service was to be used, the application would need
to do it this way. This point will be dealt with more detail later in the
software distributions section.

There are still three very important components developed for Magnus.
They correspond to the speech recognition processing units for the FrontEnd
chain: the HPSFilter, the ButterLP and the DeEsser classes, but since a
complete chapter is dedicated to this enhancement technique they are rather
left to be explained in due time.

5.2.3 Sphinx-4 configuration

The Sphinx-4 configuration manager system has two primary purposes:

• Determining which components are to be used in the system.

• Determining the detailed configuration of each of these components.

In order to obtain a modular and pluggable structure of the system, the
configuration manager relies on a configuration file, which defines:

• The names and types of all the components of the system.

• The connectivity of these components.

• The detailed configuration for each of these components.

This configuration file is an Extended Markup Language (XML) file. Each
of the components listed must implement de Configurable interface in order to
define them correctly. The configuration data for the components are called
properties, which are simple name/value pairs. If a property is omitted from
the configuration file, the component will usually provide a default value for
the property.

5. Architecture, main components and software distributions 68

Sphinx-4 simple properties can be of the following types:

• boolean: the value can be either “true” or “false”.

• float: a single-precision floating point value.

• double: a double-precision floating point value.

• int: a 32 bit signed integer.

• String: a sequence of characters.

• Component: the name of a Sphinx-4 component.

In addition to these simple property types, there are two “list” types:

• String list: a list of strings.

• Component list: a list of components.

Lists are defined in a “propertylist” element. Each item in a list is defined
with an item element.

The following description details the elements and attributes of the con-
figuration file:

• <config>: the top level element. It has no attributes. It can have any
number of the component, property and propertylist sub-elements.

• <component>: defines an instance of a component. This element must
always have the name and type attributes.

• <property>: used to define a single property of a component or a
global system property. This element must always have the name and
value attributes.

• <propertylist>: used to define a list of strings or components. This
element must always have the “name” element. It can be filled with
any number of item sub-elements.

• <item>: The contents of this element define a string or a component
name.

5. Architecture, main components and software distributions 69

Hereunder, an example of the FrontEnd’s basic configuration defined in
the “magnus.config.xml” file:

<!-- *** -->
<!-- The live frontend configuration -->
<!-- *** -->
<component name="epFrontEnd"

type="edu.cmu.sphinx.frontend.FrontEnd">
<propertylist name="pipeline">

<item>microphone </item>
<item>hpsf </item>
<item>butterlp </item>
<item>deesser </item>
<item>speechClassifier </item>
<item>speechMarker </item>
<item>nonSpeechDataFilter </item>
<item>premphasizer </item>
<item>windower </item>
<item>fft </item>
<item>melFilterBank </item>
<item>dct </item>
<item>liveCMN </item>
<item>featureExtraction </item>

</propertylist>
</component>

Finally, let’s notice the appearance of the “global properties”, defined out-
side of any component, at the configuration level. Their use relies only on a
matter of simplicity. These global variables can then be used in the property
statements within the components’ items.

For an example of a complete configuration file please refer to the ap-
propriate file, “magnus.config.xml”, found in the source code distribution of
Magnus. The description of the different classes referred in the configuration
file can be found in the Theory Part of the thesis (see Chapter 3).

The reader will notice that in Figure 5.1 there appear a couple of files
along with the main configuration file described so far. These files are named

5. Architecture, main components and software distributions 70

“magnus.gram” and “magnus.dict”. They correspond to the grammar and
dictionary configurations respectively.

The grammar configuration file, in the case that concerns this thesis, cor-
responds to a context free BNF-style grammar named Java Speech Grammar
Format (JSGF). Refer to [Knuth, 1964] for more details about the BNF-style.
This configuration file specifies the order the different components should
have when speech was to be recognized, just as any grammar rule would
specify. This grammar style can only be used with the Sphinx-4 FlatLin-
guist class.

The dictionary configuration file, working along with the Sphinx-4 Full-
Dictionary class, provides a map between the speech words/units that the
system is allowed to recognize and their corresponding phonetic transcrip-
tion, which corresponds to the acoustic models trained by the system. With
the information provided by this dictionary configuration file, the grammar
configuration file and the acoustic models, the Linguist is able to build the
search graph, which will be later on used by the search manager to decode
the incoming speech and produce the expected results.

Again, for examples of complete dictionary and grammar configuration
files refer to the corresponding files bundled in the source code distribution
of Magnus.

5.3 Software distributions

Magnus can be obtained through different distribution means: the source
code package, the binary package, the development checkout and the Java
Web Start service.

5.3.1 Source code distribution

The source code package provides the totality of the Magnus Java source
code. From this package the whole application can be built. In fact, all
Magnus distributions have been produced from this package. This means of
distribution is clearly oriented to developers.

5. Architecture, main components and software distributions 71

In order to ease the process of compilation of the sources Apache Ant has
been used. Ant is a tool for automating software building processes. The
building process is described through a XML file, which indicates all the steps
necessary to successfully carry out the different actions that contains. As it
can be seen in Magnus, the file “build.xml” in the root folder of the project
contains this information. The different actions can be assigned a predeter-
mined order of precedence; it wouldn’t make sense to build the distribution
compressed package before compiling the source code.

The different actions that can be launched from the command line at the
root folder of the project are:

ant init This command calls the Sphinx-4 builfile and compiles the speech
recognition engine, to then copy the needed files to the “lib” folder in
Magnus. As this is the first action that Ant performs it doesn’t depend
on any previous action.

ant compile This command depends on “init”. It first creates the “build”
folder. Then it compiles the Magnus source code and puts the resulting
bytecodes into the this folder.

ant dist This command depends on “compile”. It first creates the “dist”
folder. Then it copies to the “build” folder all the images needed by
the program as well as the configuration files. Finally it creates the
jar distribution file by compressing the files in the “build” folder and
placing the resulting jar file into the “dist” folder, previously having
created the corresponding manifest file indicating the main class and
the classpath.

ant run This command depends on “dist”. It launches the application.

ant document This command depends on “dist”. It is the default com-
mand, which means that if Ant is launched with no argument, this is
the one taken by default. It first creates the doc folder, then creates the
javadocs (documentation of the classes in HTML format) and finally
dumps these file into the created folder.

ant clean This command does not depend on any other. It cleans up the
Magnus application distribution by removing all the produced binary

5. Architecture, main components and software distributions 72

files, leaving only the source code files. Then calls the Sphinx-4 build-
file to produce the same effect on the speech recognition engine, thus
preparing the project for a complete new fresh compilation.

The source code distribution may be used to improve Magnus, or to adapt
it to the needs of a particular user or for a particular purpose. The source
packages available in the forge of Magnus correspond to stable and advanced
enough releases of the software that deserve a versioning number. If the
reader wishes to have the very latest version of Magnus, he or she would
better check out the whole source distribution from the subversion repository.
This alternative is described in the following subsection.

5.3.2 Development distribution

This means of distribution results in the obtention of the same kind of
package as with the source code distribution, this one is indeed the source
code of Magnus, but the version of the application may be a more recent
release than the stable tarballs classified as the previous “source code distri-
bution”.

The reason of their existence is the use of a Control Versioning System
(CVS) named Subversion. This system enables the developer to have a com-
plete control on the versions of the source code of the software. It is a very
practical and organized way of working.

If the reader (the end user) wishes to obtain the very latest version of the
program, the following command shall be entered in the command line:

svn checkout https://forja.rediris.es/svn/csl2-magnus/trunk

Then a new folder will be created containing the whole checkout of
the latest source code version.

Also with Subversion, the latest development version of the Scilab scripts
used to produce the speech enhancement unit can be ckecked out though
the following command:

5. Architecture, main components and software distributions 73

svn checkout https://forja.rediris.es/svn/csl2-magnus/scilabworks

These scripts will be described in detail in the practice chapter dedi-
cated to the speech enhancement unit.

5.3.3 Binary distribution

This means of distribution is meant for end users. The package contains
the main Magnus class and all the needed dependencies. In order to launch
the program successfully, the user should run:

java -jar -Xmx500m Magnus-<version>.jar

The reader will notice the extra -Xmx500m added in the command.
This allows the JVM to use a maximum heap size of 500MB. Since Magnus,
like any signal processing application, is a very intesive processing task
which requires a lot of memory allocation, it is important that the system
that runs such an application is able to dispose of a big amount of memory.
Thus, by setting 500MB to the JVM compared to the default 256MB, the
program is supposed to work more smoothly.

And one last remark about the previous command, in case the question
arises: there is no need to set any classpath because the Magnus main class
as well as the dependencies are in the same folder level.

5.3.4 Java Web Start distribution

This is the easiest way of running Magnus. There is no need to consciously
download any package, the only action required by the user is the click on
the right link lodged in the Magnus Project’s Weblog.

The JWS service allows the whole automatization of the needed processes
in order to automatically get the program running on any host computer.
The link mentioned above points to a file that holds the configuration for
getting the application. Its name is “Magnus.jnlp”. This service checks the
host computer if Magnus has already been launched some time. In the case
that it is the first time the program is requested, JWS will automatically

5. Architecture, main components and software distributions 74

download it from the Internet and launch it afterwards. In the case that it’s
not the first time, JWS will compare the version held in the host computer
to the version held in the servers, which is supposed to be the most recent
one. Then, if the Internet version is the same as the local (host) version,
Magnus will launch as usual, but if the Inernet version is a newer revision
of the application, then JWS will upgrade the program automatically and
launch it afterwards.

JWS is a service that empowers the security of the offered applications.
Because of this, the files hosted in the servers need to be signed by a certified
organization. Magnus does not provide such a certified signature, for what
its developer has signed the program himself. If the reader trusts in the
developer’s word, then there will be no problem at all to launch Magnus.
This paragraph refers to the alert that JWS issues every time an application
without a certified signature is about to be launched. The official weblog of
the project is presently available at:

http://magnusproject.wordpress.com/

If any sudden change happened, always trust the developer’s home-
page available at:

http://www.salle.url.edu/∼st12809/

These sites are sure to host the true Magnus application, so there is
no fear to be had of any malicious piece of code. Stay calm. :)

Chapter 6

Speech Enhancement Modules

This chapter treats in detail the analysis and design of the speech enhance-
ment module for magnus based on the description provided in the Theory
Part.

In order to work in an adequate and confortable environment adapted
to the study and development of signal processing algorithms, the chosen
framework has been Scilab, a very powerful open source platform for numer-
ical computation, developed and maintained by INRIA, the French National
Institute for Research in Computer Science and Control. Scilab is available
at http://www.scilab.org.

6.1 Overview

The speech enhancement module for Magnus represents an extension to the
FrontEnd processing chain of Sphinx-4. According to the documentation of
the speech recognition engine, any module that aims to successfully integrate
into the processing chain of the system must implement the “Configurable”
interface, thus becoming a pluggable module, i.e. a component, like all the
rest of the modules of the system.

According to [Shankar Chanda and Park, 2007], the speech enhancement
module proposed improves the intelligibility of far-end clean speech signal
to a listener who is located in such environment. The module is composed
of three sub-modules: a tunable high-pass shelving filter, an excess boost

6. Speech Enhancement Modules 76

reducer and a vocal de-esser. Each of these sub-modules has been imple-
mented as an independent data processor in the Sphinx-4 FrontEnd chain by
extending the BaseDataProcessor class, which implements the Configurable
interface. These components, like any abstract DataProcessor, implement
elements common to all concrete DataProcessors, such as name, predecessor,
and timer.

The life cycle of a component is as follows:

1. Class parsing: The class file is parsed in order to determine all its
configurable properties.

2. Construction: The (empty) component constructor is called in order
to instantiate the component. Typically the constructor does little, if
any work, since the component has not been configured yet.

3. Configuration: The component’s newProperties method is called with
a PropertySheet containing the properties (usually taken from an ex-
ternal configuration file). The component should extract the properties
from the property sheet.

And when it comes to interconnecting the different components, instead of
hardcoding which subcomponents a particular subcomponent is interacting
with, the component should use the configuration manager to provide the
hookup to another component by defining configuration properties.

6.2 Tunable high-pass shelving filter

This component can be identified under the HPSFilter class name. It has
two configurable properties:

• PROP HPSF Gz: This property defines the value of the gain of the
filter at 2KHz. Its default value is arbitrarily set to 0.7.

• PROP HPSF Gp: This property defines the value of the gain of the
filter at 6KHz. Its default value is arbitrarily set to 1.7.

6. Speech Enhancement Modules 77

As it can be seen in the above itemization, the frequency dynamic tuning
range of the filter is enclosed between 2KHz and 6KHz. This responds to
the range left between the highest vocal formant frequency and the domain
of the consonant sound frequencies.

Figure 6.1 shows the diagram of this first module of the speech enhance-
ment chain.

Figure 6.1: Tunable high-pass shelving filter diagram.

6.2.1 Level detection

This sub-module is implemented as a HPSFilter class function. It merely
calculates the Root Mean Square (RMS) of the input signal. As usual, for a
frame j of n elements (samples) it is calculated as Equation (6.1).

RMS(framej) =

√√√√ 1

n

n−1∑
i=0

frame2
j [i] (6.1)

6.2.2 APF parameter estimation

This sub-module is implemented as a HPSFilter class function. It first
determines the new cut-off frequency by applying Equation (6.2).

newFc = presentFc− 833 ∗ (RMSinput −RMSoutput) (6.2)

6. Speech Enhancement Modules 78

From experimental results it is shown that at the most sibilant part of
speech, the difference in speech RMS levels stated in Equation (6.2) doesn’t
exceed the 0.6 value. By applying this calculation the system needs to process
at least 4 frames to run through the whole allowed frequency range (from
2KHz to 4KHz). Each frame provided by the sound card brings around
10ms of speech, which results in a 40ms system delay until the filter is tuned
stable. Taking into account that a reference phoneme lasts around 30ms at
least, this method yields a comparable order of magnitude in its response.
The reason for doing so is to prevent the estimator from oscillating around
a desired cut-off frequency and thus distabilizing the system.

Once the new frequency is determined, it is checked that it does not exceed
the limits permitted by the tunable filter. If it does, then the new cut-off
frequency is truncated to the upper or lower bounds of the filter.

After finally determining the new cut-off frequency that the tunable high-
pass shelving filter should have, a smooth transition from the old cut-off
frequency to the new one should be obtained. In order to do so, a controller
with two complex conjugate poles is proposed. The aim of this design is the
obtention of a system with a step response similar to the one shown in Figure
6.2.

The design of such controller starts with the definition of two variables: τ ,
which indicates the time of stabilization of the system (this thesis associates
this time with 5τ as if the system was an electric circuit), and tr, which
indicates the rise time of the system, the time that passes by during the
transition from the 10% to the 90% of the difference between the old output
value and the new one.

Once the system’s desired constants have been set, Equation (6.3) and
Equation (6.4) can be computed. These equations compute two new variables
that will be used in the definition of the controller in the Laplace domain.

χ =
−0.8 +

√
0.82 + 10 tr

τ

5
(6.3)

w0 =
0.8 + 2.5χ

tr
(6.4)

6. Speech Enhancement Modules 79

Figure 6.2: Step response of the desired controller.

Then, the controller M(s) can be obtained in the Laplace domain through
Equation (6.5).

M(s) =
w2

0

s2 + 2χw0s + w2
0

(6.5)

Since the system that results from Equation (6.5) is defined in a continuous
domain it can’t be used. Thus it needs to be discretized. In order to do so,
the bilinear transform is proposed. This transform does not provide accurate
results at high frequencies, the frequency warping is linear at low frequencies
and logarithmic at high frequencies as it is shown in [Oppenheim et al., 1983],
but since the maximum frequential information used will be 4KHz, that is
still considerably lower than the Nyquist’s frequency, wich results at 8KHz
(notice that the sampling frequency of the speech signals is 16KHz). Equation
(6.6) defines the bilinear transform.

6. Speech Enhancement Modules 80

H(z) = H
(
s =

2

T

z − 1

z + 1

)
(6.6)

Parameter T in Equation (6.6) refers to the sampling period, thus T =
16000−1 = 62.5µs. Finally, once the controller is designed, according to the
sign of the frequency increment that must be applied to the cut-off frequency
of the tunable high-pass shelving filter, a predetermined controller is created.
In the case that the increment is positive, the controller M(z) is defined with
τ = 6ms and tr = 6ms resulting in Equation (6.7), but if the increment is
negative then the controller is defined with τ = 6ms but tr = 20ms and thus
obtaining Equation (6.8). This distinction corresponds to the specifications
given at [Shankar Chanda and Park, 2007].

M(z) =
0.0001107 + 0.0002215z + 0.0001107z2

0.9793837− 1.9789408z + z2
(6.7)

M(z) =
0.0000265 + 0.0000531z + 0.0000265z2

0.9793820− 1.9792758z + z2
(6.8)

In order to ease the disposal of processing tasks through static filters, as
is the case with Equation (6.7) and Equation (6.8), in Magnus a new class
named GenericFilter has been produced.

Once the adequate controller is declared (instantiated with the Generic-
Filter class), a step signal is created with the present and the future cut-off
frequencies. Then this signal is convoluted through the controller, and from
the resulting output signal the final frequency transition vector is obtained.

As mentioned before, this vector corresponds to a smooth frequency tran-
sition, the values it contains represent instant discrete cut-off frequencies. In
order to apply them to the filter they need to be transformed into the α pa-
rameter required by the All Pass Filter (APF), which is then used to create
the high-pass shelving filter. Equation (6.9) presents the map between the
cut-off frequencies and their corresponding α values, bearing in mind that
wc = 2πfc

16000
.

α =
1− sin(wc)

cos(wc)
(6.9)

6. Speech Enhancement Modules 81

As it can be derived from Equation (6.9) there’s a discontinuity at 4KHz;
α tends to ∞ or −∞ depending on the sign taken for the solution of the 2nd
degree equation. That’s why it has been taken 3.9KHz as the upper bound
cut-off frequency limit allowed for the tunable filter to acquire. Although
this value may be arbitrarily taken, it is close enough to accomplish its goal,
and as it can be seen in Figure 6.3 the whole frequential range is kept very
linear.

Figure 6.3: Map between the cut-off frequency and the α parameter.

In the end the vector of α values is obtained. These values correspond
to the instant cut-off frequencies for the temporal length of the frame in
question.

6.2.3 High-pass shelving filter

At this point all the necessary elements to produce the high-pass shelving
filter are ready. In order to enable the filter to process the frames with
the time-varying α parameter the inverse Z transform (using equations in

6. Speech Enhancement Modules 82

differences) needs to be applied to the proposed filter, thus yielding Equation
(6.10) and Equation (6.11) as the resulting filter expressed in the discrete time
domain.

A[n] = −Gπα[n]−Gπ −G0α[n] + G0

B[n] = Gπα[n] + Gπ −G0α[n] + G0
(6.10)

y[n] = α[n] y[n− 1] +
B[n]

2
x[n] +

A[n]

2
x[n− 1] (6.11)

Finally, Equation (6.11) can be computed iteratively through all the el-
ements of the incoming frames (input speech) to produce the outcoming
processed frames (output speech) as shown in Figure 6.1.

6.3 Excess boost reducer

The second sub-module of the speech enhancement process consists of a
6KHz second-order low-pass filter. The aim of this filter is the reduction of
the excess boost produced by the previous part, the high-pass shelving filter.
Since the speech signals don’t contain much information within the high part
of its spectrum, the cut-off frequency of this filter is fixed at 6KHz. Moreover,
the acoustic models used in the speech recognition engine have been created
with samples previously filtered at about 6KHz. It would not make sense to
be using different acoustic features.

According to the Theory Part (see Chapter 4) this filter should be a shelv-
ing second-order low-pass filter, thus a Butterworth design has been taken
for its implementation. Equation (6.12) presents the transfer function of this
filter in the discrete domain.

HLPF (z) =
0.3423570 + 0.6847139z + 0.3423570z2

0.1780545 + 0.1913733z + z2
(6.12)

In Magnus this component can be identified under the ButterLP class
name and it has no configurable properties. It has been implemented using
an instance of the GenericFilter class mentioned in the previous section.

6. Speech Enhancement Modules 83

6.4 De-esser

The last sub-module of the speech enhancement unit is the de-esser, iden-
tified under the DeEsser class name. Figure 6.4 shows the structure of the
de-esser proposed in this thesis.

Figure 6.4: De-esser structure.

The goal of a de-esser is to mitigate the excess of high frequency power
produced by a high frequency signal. Typically this effect takes place with
the presence of loud “ess” sounds produced by fricative phonemes. These
loud annoying sounds are called “sibilants”. A sound is considered sibilant
when its appearance causes discomfort to the listener. Since the first sub-
module of the speech enhancement unit outputs a gain at high frequencies
these sibilant sounds are likely to appear, and thus, they must be treated.

Figure 6.4 provides a set of elements that detect the presence of the sibi-
lants and act in consequence by reducing the gain at high frequencies of the
low-pass shelving filter. The processing pipeline that deals with the sibilants
and provides a feedback is called a side-chain .

6.4.1 Side-chain

The side-chain proposed in the de-esser is composed of three stages: the
determination of the ratio between the signal level and the level of the lower
part of the signal spectrum, the estimation of the attenuation with a hard-
knee compressor and the determination of a smooth transition between the
old attenuation values and the new ones.

6. Speech Enhancement Modules 84

On the first stage, the lower part of the spectrum of the signal is separated
with a second-order low-pass filter created with the Butterworth design, thus
resulting in Equation (6.13).

HLPF (z) =
0.3423570 + 0.6847139z + 0.3423570z2

0.1780545 + 0.1913733z + z2
(6.13)

Then the levels of the input signal and the filtered signal are obtained
through the computation of the RMS of the signals. Afterwards the ratio r
between these two values is obtained as is expressed in Equation (6.14).

r =
RMS(input signal)

RMS(filtered signal)
(6.14)

On the second stage, the attenuation is estimated with a hard-knee com-
pressor. This artifact responds with an abrupt function, defined in different
ranges, as is shown in Figure 6.5.

Figure 6.5: Hard-knee compressor function.

6. Speech Enhancement Modules 85

In Figure 6.5 the values are assigned through Sphinx-4 properties, whether
via the properties sheet or via the default values. The DeEsser class accepts
the following properties:

• PROP DE TH1 for “threshold1”. If the ratio is kept smaller than this
threshold the de-esser is transparent. Its default value is set to 1.5.

• PROP DE TH2 for “threshold2”. If the ratio is bigger than the pre-
vious threshold but still smaller than this one, the hard-knee assigns
a new gain value according to the predefined attenuation function. Its
default value is set to 3.

• PROP DE SLOPE for “slope”. This is the slope of the linear attenu-
ation function. Its default value is set to −0.67.

• PROP DE CNT for “constant”. This corresponds to the independent
term of the linear attenuation function. Its default value is set to 2.

• PROP DE FINGAIN for “fingain”. This property represents the final
gain that the compressor sets if the ratio exceeds “threshold2”. Its
default value is set to 0.

On the third stage, a step function is constructed with the present and the
new estimated attenuations. Then a controller MSC(z) with two conjugate
poles is created, defined with τ = 6ms and tr = 10ms, thus resulting in
Equation (6.15).

MSC(z) =
0.0000594 + 0.0001189z + 0.0000594z2

0.9793827− 1.9791449z + z2
(6.15)

Finally the vector of attenuations as a function of discrete time is obtained
from the result of the convolution between the step signal and the side-chain
controller, a process again carried out by an instance of a GenericFilter. This
vector is then applied to the real-time filter process of the low-pass shelving
filter.

6.4.2 Low-pass shelving filter

This filter is obtained from the design proposed in the high-pass shelving
filter of the first speech enhancement module. Since the gains at low and high

6. Speech Enhancement Modules 86

frequencies are configurable, it has been observed that instead of assigning
G0 < Gπ and thus obtaining a high-pass filter, if the inequalty is inversed
the resulting filter is low-pass.

Then by fixing the α parameter to 2KHz as explained in due section and
leaving Gπ as a function of the attenuations vector, Equation (6.16) and
Equation (6.17) can be determined to perform the de-essing process in real-
time.

A[n] = −α Gπ[n]−Gπ[n]− α + 1
B[n] = α Gπ[n] + Gπ[n]− α + 1

(6.16)

y[n] = α y[n− 1] +
B[n]

2
x[n] +

A[n]

2
x[n− 1] (6.17)

6.5 Speech enhancement results

With Scilab, two environments are shown through a simulation, both with
satisfactory results. The first one, shown in Figure 6.6, presents a speech
utterance with a sibilant. As it can be seen, the middle-higher part of the
spectrum is raised compared to the original spectrum. In this situation the
most important element of the speech enhancement chain is the tunable
high-pass shelving filter.

The second environment presents the system’s response with a sibilant
chunk of speech. Figure 6.6 also displays this situation, thus showing that
different enhancement effects can take place in the same speech frame. At
the highest part of the spectrum (above 2π

3
which corresponds to 6KHz) the

enhanced speech is almost inexistent. This is due mainly to the effect of the
excess boost reducer.

Finally, Figure 6.7 shows the signals as function of discrete time, high-
lighting the results offered by the excess boost reducer and the de-esser sub-
modules. Since the de-esser varies its transfer function through time, this
effect is shown as not all the speech chunks are affected by the same amount
of attenuation.

6. Speech Enhancement Modules 87

Figure 6.6: Spectral plot of an enhanced speech utterance with a sibilant.

By showing these two different environments the system proves to perform
successfully at increasing the presence of the consonants in a speech signal.
The system also proves not to be doing so blindly, because if the input signal
is sibilant, the system responds with a decrease (of such gain) instead of an
increase.

In the development package of these speech enhancement modules there
are some other audio samples, prepared with Audacity, with other disturbing
effects (echo, bass boost, amplifier tone, chirp, ...) that can be taken as ex-
amples to test the peformance of the speech enhancement modules proposed.
They are available in the “scilabworks/audio” folder.

In order to produce the disturbing effects Audacity has been fed with a col-
lection of LADSPA plugins provided by Steve Harris (Steve Harris’ LADSPA
Plugins) and Tom Szilagyi (TAP-plugins). Extensive information about gen-
eral LADSPA plugins and their plugins in particular can be found in their

6. Speech Enhancement Modules 88

Figure 6.7: Temporal plot of a sibilant speech utterance. The most sibilant
parts of the chunk have been highlighted.

respective project’s websites:

• Steve Harris’ LADSPA Plugins: http://plugin.org.uk/ladspa-swh/
docs/ladspa-swh.html

• TAP-plugins: http://tap-plugins.sourceforge.net/

Since the goal of the speech enhancement unit has already been proven to
be working correctly, the rest of these annoying effects have not been included
in the thesis.

Chapter 7

Regression Tests

This chapter explains the setting up of the regression tests built for Magnus
in order to quantize its improvements with respect to Sphinx-4, the original
speech recognition engine upon Magnus has been built. The test data has
been obtained at the Department of Education of the Government of Cat-
alonia.

7.1 Setting up a regression test

The regression tests are run in “batch mode”, which means that the recog-
nition process does not take place in real time, getting the input speech from
a microphone. In this mode the speech signals are previously recorded in au-
dio files and then the appropriate commands are launched in order to obtain
the results of the regressions.

Each batch mode regression test consists of the following components:

• Test data: the audio or cepstral data to perform the test on.

• Batch file: this text file lists the location of all the test files, as well as
their transcriptions.

• Acoustic models and dictionary.

• Configuration file: specifies the configuration of the system used to test
the data.

7. Regression Tests 90

• Grammar file: this is a BNF-style grammar file (JSGF).

• Batch-mode Recognizer: this is the Sphinx-4 batch-mode recognizer.

All the files and information described in this chapter are available under
the “test” folder name which can be found in the source code distribution of
Magnus.

7.1.1 Input audio files

Sphinx-4 can handle only raw data. The audio defaults to 2 bytes/sample,
at 16000 samples per second. The files are expected to be raw binaries with-
out header. The Java platform assumes big endian order, always. Although
these parameters can be changed, they are maintained for all speech files.

The audio files have been recorded with Audacity, a free audio edi-
tor and recorder. More information about this program is available at:
http://audacity.sourceforge.net/. As stated before, the sampling fre-
quency has been kept at 16KHz and the data samples at 16 bits PCM, little-
endian, that is the default WAV file format as the uncompressed export
format. PCM refers to Pulse-Code Modulation, which is a digital represen-
tation of an analog signal where the magnitude of the signal is sampled and
quantized regularly at uniform intervals.

In order to obtain the desired audio format files for the regression tests, a
free sound tool named Sox has been used. Please check the project’s website
for more information about Sox at: http://sox.sourceforge.net/. To
convert the WAV audio file format into RAW data, while exchanging the
order of the samples’ bytes, the following command has been run on the
command line:

sox <filename>.wav -x <filename>.raw

7.1.2 Batch file

A batch file is a text file that contains the list of files to be processed, with
the transcription for each file. One line for each file, where the first element
in a line is the file name, which can be an absolute or relative path, and

7. Regression Tests 91

includes the file extension. And after the file name, the words that make
up the transcription for the audio. Sphinx-4 uses the transcription provided
here to compute the system’s accuracy after each sentence is processed.

An utterance’s processing produces a hypothesis, which is then compared
to the transcription and a summary of the results is reported. Aspects like
the alignment, the extra insertions and the missing ones are treated in this
analysis.

The various batch files written for magnus are available under the “test/
batchfiles” folder. The file named “deptedu.batch” contains all the original
sound files recorded at the Department of Education, while the files named
“deptedu.malevoices.batch” and “deptedu.femalevoices.batch” separate the
male speakers from the female speakers. This distinction is important be-
cause male and female voices have different signal properties, and thus, the
speech recognition system may not respond in the same way for the two
signal types.

7.1.3 Acoustic model and dictionary

The acoustic model used for the regressions corresponds to the Wall Street
Journal (WSJ) produced by the build process of Sphinx-4. This model
has been created with recordings from this journal by the developers of
Sphinx-4 at Carnegie Mellon University, so the phonemes trained belong
to the American Engish phonetic language. The name of the model is
“WSJ 8gau 13dCep 16k 40mel 130Hz 6800Hz”.

The dictionary has been prepared specifically to recognize Catalan com-
mands. Although the acoustic models defined above are created using a dif-
ferent language, the phonemes can be regrouped to form the desired words.
The file that contains this information is named “magnus.dict” and can be
found under the “cfg” folder in the source code distribution of Magnus. As a
means of exposing the various commands available (so far), the file is shown
as follows:

<sil> SIL <silenci>
CLICK K L IH K clic

7. Regression Tests 92

CLICK(2) K L IY K clic(2)

STOP S IH si!

STOP(2) S IY si!(2)

LEFT AH S K EH R AH esquerra

LEFT(2) AH S K EH R EH esquerra(2)

RIGHT D R EH T AE dreta

RIGHT(2) D R EH T ER dreta(2)

UP AH M UW UW N amunt

DOWN AH B AA AY avall

DOWN(2) AH V AA AY avall(2)

MENU M AE N UW menu

MENU(2) M AA N UW menu(2)

DOUBLE D AO P L AH doble

DOUBLE(2) D AO P L AE doble(2)

DRAG AH R UW S EH G AE arrossega

DRAG(2) AH R UW S EH G AH arrossega(2)

KEYBOARD T AH K L AH T teclat

KEYBOARD(2) T AH K L AE T teclat(2)

MOUSE R AH T UW L IY ratoli

MOUSE(2) R AH T UW L IH ratoli

As it is shown above, the file maintains the configuration established by
Sphinx-4 in order to interact with the FullDictionary class of the Linguist.
According to the future objective of the project to bring the program to other
languages, a goal that is sometimes referred to as “internationalization”,
Magnus works all the time with English commands but presents them in
the corresponding language, so it translates them before it shows them, but
internally, as a means of simplicity, the language used is English.

7.1.4 Configuration file

As usual, the configuration files describes the elements that have a role
in the recognition process. When it comes to batch mode recognition, the
elements are not the same as live mode recognition.

In the “test/configfiles” folder of the source code distribution of Magnus
there are several configuration files that correspond to the proposed regres-

7. Regression Tests 93

sion tests. The files named “deptedu.config.nose.<wsj|rm1>.xml” refer to
the tests that do not incorporate the extra speech enhancement sub-modules,
but the files named “deptedu.config.se.<wsj|rm1>.xml” incorporate them.
These two types of configuration files are used to quantize the improvement,
if there is some, in the speech enhancement process proposed.

Bear in mind that the Sphinx-4 configuration files shall provide a static
folder path for the location of the grammar and static file paths for the
location of the dictionary and the filler. In order to ease the setting up of
these paths, at the beginning of each test configuration file there are three
root properties that define the location of the mentioned elements.

The only difference between these two types of files is the presence of the
three speech enhancement artifacts desribed in the previous chapter: the
HPSFilter, the ButterLP and the DeEsser. The instrumentation tools are
the same, and they are described in the following section.

7.1.5 Grammar file

Sphinx-4 uses the Java Speech API Grammar Format (JSGF) to perform
speech recognition using a BNF-style grammar. JSGF grammars are used
with the FlatLinguist Sphinx-4 class. The features of JSGF include:

• Using other grammar rules within a grammar rule.

• The OR “|” (pipe) operator.

• The grouping “(...)” operator.

• The optional grouping “[...]” operator.

• The zero-or-many “*” (Kleene star) operator.

• An associated probability.

Under the “cfg” folder name in the source code distribution of Magnus
there can be found the file named “magnus.gram”. This text file, written with
the JSGF specification, holds the specific grammar structure for Magnus.

7. Regression Tests 94

One of the most simple and intuitive structures of grammars are the typical
command and control structures, like the one that shows the grammar file of
Magnus:

#JSGF V1.0;

/**

* JSGF MAGNUS Grammar in Catalan

*/

grammar magnus;

public <tokens> = (LEFT | RIGHT | UP | DOWN | STOP | CLICK |
MENU | DOUBLE | DRAG | KEYBOARD | MOUSE)*;

The command and control structures with no special features like the ones
described above (groupings, probabilities...) result in very simple and naive
grammar graphs, which yield fast recognition results at the expense of poorer
accuracy results. It’s a matter of finding the optimum tradeoff between these
two features for the desired application.

7.1.6 Batch-mode recognizer

This Sphinx-4 class decodes a batch file containing a list of audio files to
decode. The audio data should be 16-bit big-endian (by default), 16KHz
and PCM-linear data. This is the class that is launched when running the
regression tests. In the “test” folder there is a simple shell script (written
in bash) to launch the tests with the appropriate commands in order to
be in concordance with the folders structure of the source code organiza-
tion. The name of the file is “deptedu.test.sh”. This script accepts two
parameters, sets the correct classpath and then launches the basic command:

java BatchModeRecognizer <xmlConfigFile> <batchFile>

Of course, the two parameters that the script accepts are the configu-
ration file and the batch file.

7. Regression Tests 95

7.2 Instrumentation tools

Sphinx-4 can be configured to output various collections of information
that may be useful for developers (mainly), which includes warning and error
messages, tracing messages, recognition results, et cetera. The output of
the various types of instrumentation information is controllable from the
configuration file.

The following subsections describe in detail the serveral instruments used
to track this information.

7.2.1 Logger

Well behaved Sphinx-4 components output informational messages via the
Sphinx-4 logger. These have a level of importance associated with them.
Some messages indicate severe problems, some messages are warnings, some
are informational, and some are fine level tracing messages. The complete
set of log levels are:

• SEVERE (highest value): an error occurs that makes continuing the
operation difficult or impossible.

• WARNING: an anomalie has occured, but the operation is continuing.

• INFO: general information.

• CONFIG: information about a components configuration.

• FINE: tracing messages.

• FINER: finer grained tracing messages (lots of output).

• FINEST (lowest value): finest grained tracing messages (huge amounts
of output).

These levels of information are configured through the value (indentified
above with capital letters) of the “logLevel” property, which can be associated
to the root level at the XML configuration hierarchy thus establishing the
default configuration of the components that contains, or otherwise can be
associated to each component separately, thus allowing different components
to have different configurations.

7. Regression Tests 96

The logLevel configured at the “cfg/magnus.config.xml” file is WARNING
while at the “test/configfiles/deptedu.config.<nose|se>.wsj.xml” is INFO.
This denotes the need of information required when running a regression
test.

Once the logging output is set to INFO at the root level of the test config-
uration files, the recognizer has to be linked to the instrumentation tools in
order to be able to output the different aspects that can be tracked. These
tools have to be itemized in the recognizer’s propertylist named “monitors”.
These monitors are detailed in the following subsections.

7.2.2 Accuracy tracker

One of the prime methods of measuring the overall quality of a speech
recognition system is the recognition accuracy. This statistic shows how
well the sentence hypotheses produced by the recognizer match the actual
transcripts of what was spoken. Obviously, recognition accuracy can only
be reported when the transcripts are available as well. This last sentence
responds for the structure of the batch files.

The component in charge of tracking the accuracy performance is the
“accuracyTracker” class. This component has two properties sets: the
“showAlignedResults” property, which displays the alignment of the recog-
nition results, and the “showRawResults” property, which shows the results
before being altered by any other process.

With this configuration of the accuracy tracker lots of information is pro-
vided for every audio file listed in the batch file. The following itemization
presents all the various qualities that could be analysed by this component:

• REF (reference): The reference or transcript. This is what should be
recognized.

• HYP (hypothesis): The result that is generated by the recognizer. This
is what was recognized.

• ALIGN REF (aligned reference): The reference text, where mismatches
between the reference and the hypothesis are highlighted.

7. Regression Tests 97

• ALIGN HYP (aligned hypothesis): The recognized text with mis-
matched text highlighted.

• RAW (raw text): The actual text recognized, including all filler words
such as silences, coughs, lip smacks, breaths and so on.

• Accuracy (word accuracy): The number of matching words compared
to the total number of words in the input as a percent.

• Errors (word error count): The total number of word errors.

• Sub (substitution count): The total number of substitution errors. A
substitution error occurs when one word is replaced by another.

• Ins (insertion count): The total number of insertion errors. An insertion
error occurs when an extra word is inserted in the hypothesis.

• Del (deletion count): The total number of deletion errors. A deletion
error occurs when a word is missing in the hypothesis.

• Words (reference word count): The total number of words expected.

• Matches (matching word count): The total number of matching words.

• WER (Word Error Rate): This is equal to the percentage of the ratio
between the sum of the substitutions plus insertions plus deletions and
the total number of words expected.

• Sentences (reference sentence count): The total number of sentences.

• SentenceAcc (sentence accuracy): This is equal to the percentage of
the ratio between the total number of matching words and the total
number of sentences.

The accuracy tracker will also show summary statistics information at the
end of a run (when the recognizer is deallocated).

7. Regression Tests 98

7.2.3 Speed tracker

Another important aspect of speech recognition is the speed of recogni-
tion. The speed tracker will track and report statistics related to the speed
of recognition. The speed tracker is added to the set of monitors in the rec-
ognizer, in the same way that the accuracy tracker is added, with the class
name of “speedTracker”.

The speed tracker is setted with three properties: the “showSummary”,
“showDetails” and “showResponseTime”. They all have self explainable
names. The data output by the speed tracker are itemized below:

• This time audio: The length of time (in seconds) of the current audio.

• This time proc: The time spent processing this audio.

• This Speed: The ratio between the processing time and the audio time.

• Total time audio: The time for all audio.

• Total processing: The time spent processing all audio.

• Total Speed: The ratio between the total processing time and the total
audio time.

• Response Time: The average (Avg), maximum (Max) and minimum
(Min) response times encountered.

Response times are useful when running in a live-mode situation where
front-end buffering latency can affect the perceived performance of the sys-
tem. These are the times from when the front-end first encounters a packet
of audio, until it is delivered to the decoding portion of the recognizer.

The speed tracker can also be configured to dump out low level timing data
for various aspects of the recognition process as many of the components in
the Sphinx-4 system will collect detailed timing statistics. This part, though,
is not treated as the goal of the thesis is not to provide a faster system, but
a more accurate and reliable one.

7. Regression Tests 99

7.2.4 Memory tracker

For some applications, and Magnus is among them, the overall memory
footprint of the recognizer is important. The MemoryTracker class is used
to track the memory usage of Sphinx-4. It is added to the set of monitors in
the recognizer in the same way as the other instrumentation components.

The memory tracker ouputs five data items listed in the following itemiza-
tion:

• Mem Total: The total amount of memory allocated to the JVM.

• Free: Of the Mem Total how much is currently not being used.

• Used This: How much memory is currently being used.

• Used Avg: The average amount of memory used.

• Used Max: The maximum amount of memory used.

Chapter 8

Speech Recognition Results

This chapter deals with the preparation of the regression tests, their per-
formance and the results obtained from them, thus evaluating the quality of
the speech recognition application.

8.1 Word Error Rate

This is the rate used to evaluate the quality of the system. It is defined as
Equation (8.1), as stated in the previous chapter.

WER =
substitution errors + deletion errors + insertion errors

total number of words expected
(8.1)

The reader may be enticed to think of the WER as a complementary rate
of the Accuracy. This is not actually true, despite the complementary rate
of the Accuracy may be close to the actual WER sometimes. But the WER
is a more restrictive rate. While the Accuracy could be higher than 90%,
the WER could still be higher than the 10% that remains. The smaller the
WER, the better the system.

The recognized word sequence can have a different length from the ref-
erence word sequence (which is supposed to be the correct one). Thus the
WER is derived from the Levenshtein distance [Woltzenlogel, 2007], working
at the word level instead of the phoneme level. The Levenshtein distance is
a metric for measuring the amount of difference between two sequences, say

8. Speech Recognition Results 101

two strings. This distance is given by the minimum number of operations
needed to transform one string into the other, where an operation is an in-
sertion, deletion, or substitution of a single word in the case that concerns
this thesis (originally the operations deal with single characters).

Then the problem of the difference in length between the recognized word
sequence and the original one is solved by first aligning the recognized word
sequence with the reference (spoken) word sequence using a dynamic string
alignment. The WER can then be computed as stated in Equation (8.1).

8.2 Audio files workbench

As is stated in [Shankar Chanda and Park, 2007] the speech enhancement
module provides an improvement of the intelligibility of far-end clean speech
signal to a listener who is located in such environment. Then, since the
listener is far away from the point of signal origin, say the speaker, the
produced speech is prone to be modified by the environment. This fact gives
place for the determination of which environments are more adequate for the
speech enhancement process proposed.

It could be said that it is interesting to know in which environments the
speech enhancement process provides better speech recognition results com-
pared to the original system without such speech enhancement process.

The speech signals obtained for the regression tests have been recorded
at the Department of Education in an acoustically insulated room, thus the
quality of the recordings is supposed to be more than acceptable. Then in
order to bring the speech enhancement process goal to success, these recorded
speeches need to be modified to emulate the environment’s acoustic pollution.

The basic tools chosen to do the speech tracks modifications are Sox and
Audacity. Let’s first define the basic format used in Sox to treat the RAW
audio files:

<format> = -t raw -r 16000 -s -w -x

8. Speech Recognition Results 102

This syntax is only valid in this thesis. The whole parameters chain
must be typed when running the commands.

Table 8.1 presents all the audio files that build the workbench with its
corresponding time length. They have all been recorded at the Department
of Education. These files are available under the “test/soundfiles” folder.

Table 8.1: Audio files workbench

Track name Time length(sec)
alex.raw 28.32
anna.raw 29.94
enric.raw 22.72
francesc.raw 23.94
jaume.raw 38.93
joan.raw 42.45
laura.raw 26.02
manel.raw 25.42
marc.raw 34.51
pablo.raw 27.63
roberto.raw 39.34
sandra.raw 38.19
sara.raw 28.56
silvia.raw 23.97

One thing should be noted: since the tack named “joan.raw” is the longest
one (42.45 seconds), its length is taken for reference for all the noise files that
will be produced.

The white and pink noises have been produced with Sox using the following
command:

sox <format> joan.raw <format> -v 0.01 <wn|pn>01.raw

synth <whitenoise|pinknoise>

8. Speech Recognition Results 103

Obviously “wn” is related to “whitenoise” and “pn” is related to “pin-
knoise”.

The rest of the noises (blue, red, violet, grey and babble) have been pro-
duced with a combination of Audacity and Sox, because the generation of
these noises is not directly available through Sox. The original noise samples
are obtained from the Wikipedia, then after checking that the noises have a
correct frequential distribution, they have to be downsampled with factor 3
with Audacity as the original files are sampled at 48KHz. Afterwards, the
dynamic range of the signals is set from -1 to 1 and finally the tracks are
exported as WAV.

Then Sox can convert the generated WAV file (little-endian) into a RAW
file (big-endian) while adjusting the volume of the signal at the same time
with the command:

sox noise.wav <format> -v 0.01 noise.raw

Finally, the whole set of noises is obtained, with the desired ampli-
tude value of 0.01 in both cases: the noises produced directly by Sox and the
noises downloaded from the Internet. This 0.01 value refers to the volume
(amplitude) of the signals. It has been chosen empirically in order to obtain
a tractable amount of noise. If the noise volume exceeds this volume, the
results are so bad that no analysis can be performed on them.

In the last step to complete the creation of the workbench, the noises
have to be mixed with the speech signals in order to emulate the different
environments of study. This step is carried out with Sox with the command:

soxmix <format> speechfile.raw <format> noise.raw

<format> noisyspeechfile.raw

The reader should note the big advantage in using a command-line pro-
gram like Sox instead of any other sound editor or Digital Audio Workstation
(DAW) with a GUI: Sox can be included in a shell script. For example,
when having to apply the same signal process to a list of files, i.e. the
files of the workbench, it’s far easier to do it with a single instruction than

8. Speech Recognition Results 104

having to edit each file separately. This is achieved with the shell instruction:

for i in *.raw; do <command>; done

The argument <command> can refer to any of the commands shown
above. Note that the RAW files in the one-line script are referred to as $i.

8.3 Regression tests results using the Wall

Street Journal acoustic models

This section is dedicated entirely to the results and the conclusions that
can be extracted from the conducted regression tests using the Wall Street
Journal (WSJ) acoustic models included in the distributions of Sphinx-4.
These acoustic models have been trained with the database CSR-I (WSJ0)
Complete, authored by John Garofalo, David Graff, Doug Paul and David
Pallett as it is shown in the website of the Linguistic Data Consortium (LDC).
The database consists primarily of read speech with texts drawn from a
machine-readable corpus of Wall Street Journal news text. The texts to be
read were selected to fall within either a 5000-word or a 20000-word subset of
the WSJ text corpus, so the database is rather abundant. The WSJ acoustic
models obtained are used by default in the distributions of Sphinx-4.

The different environments proposed in this section are tested sequentially,
following a certain order and taking into account the previous results in the
conclusions. In order to run the tests, once the speech files have been created,
the script named “test/deptedu.test.sh” has to be run with two arguments:
the configuration file and the batch file.

This thesis presents three perspectives of study: the presence/abscence
of sources of noise, the gender of the speakers and the use of the speech
enhancement unit. These three variables determine the several environments
considered, to be then compared according to the resuting WER so as to
extract the pertinent conclusions.

The summary statistics dumped by Sphinx-4 are available in the
“test/results” folder.

8. Speech Recognition Results 105

8.3.1 Acoustic insulated environment

Due to the environment characteristics, the summary statistics should yield
the minimum WER possible since the speech tracks are the ones with the
best acoustic quality. The recordings have been performed in an acoustically
insulated room, thus the speech sound files contain the most clean speech
signals. All the rest of the signals (the ones that emulate a predefined envi-
ronment) have been created from these ones. Table 8.2 shows the obtained
results.

Table 8.2: Recognition results obtained in an acoustic insulated environment

Gender Process WER(%) Speed(×RT) Memory(MB)

Male
No SE 15.94 0.69 63.13
SE 18.36 0.73 63.15

Female
No SE 22.61 0.70 63.16
SE 27.83 0.73 63.12

1Note: SE and RT stand for Speech Enhancement and Real Time, respec-
tively.

As it can be seen in Table 8.2 the resulting WER is not very low (compared
to what would be desirable) despite of the quality of the speech recordings.
This can be attributed to the fact that the majority of the speakers had no
previous training at all with the system. In fact, in only one speech track
(out of fourteen) the speaker had previous experience with Magnus. This
track corresponds to the system’s developer.

As it can be observed for both genders, the speech enhancement unit wors-
ens a little bit the system’s performance. The speech enhancement unit is
supposed to do its job when there’s noise pollution mixed with the speech
signal. So, if the environmental conditions differ (in this case the noise pol-
lution is absent) it makes sense that the enhancement unit fails to do what
it is supposed to do, or even impoverish the system’s performance as is the
case.

8. Speech Recognition Results 106

Here a noise pollution sensor should be included in order to detect when is
it worth to turn on the speech unit system and when this enhancement unit
will worsen the performance of the main system.

One last observation: the higher WER in the female voice recordings. This
may be due to the set of acoustic models used to perform the recognitions:
the WSJ models. As stated in [Adbulla and Kasabov, 2001], in speaker inde-
pendent speech recognition system, as Magnus aims to be, the speaker vari-
ability is rather undesirable. This responds to the vast number of training
speech samples required to build accurate acoustic models. Male and female
speeches differ considerably in the average pitch frequency of the speaker.
That’s why a gender dependent HMM for each word is proposed, with sig-
nificant improvement in word recognition accuracy. Please refer to the cited
article for further details. Sphinx-4 does not provide such gender separation,
so recognition accuracy differences are likely to appear.

The four summary statistics files dumped by Sphinx-4 are available with
the “originals” particle prepended to the files.

8.3.2 White noise polluted environment

In order to obtain a first approximation of the effects that the noise added
to the recorded signals can produce over the recognition performance of
Magnus, a white noise is proposed. White noise is characterized for having a
uniform distribution over the frequential axis — a flat frequency spectrum in
linear space. Then, both the higher and lower parts of the signals are equally
polluted. White noise is kind of “bright” and not terribly relaxing, but is
very effective for masking other sounds.

The maximum peak amplitude of the noise signal is set to 0.01. Figure 8.1
shows the frequential plot of the white noise produced for the tests.

With this environment the speech recognition results are not expected to
be as good as the results obtained with the clean speech recordings because
of the noise pollution added to the whole spectrum uniformally. Table 8.3
shows the performance summary statistics obtained.

8. Speech Recognition Results 107

Figure 8.1: Frequential analysis of white noise

Table 8.3: Recognition results obtained in a white noise polluted environment

Gender Process WER(%) Speed(×RT) Memory(MB)

Male
No SE 21.74 0.79 63.14
SE 22.71 0.80 63.21

Female
No SE 40.87 0.83 63.13
SE 40.00 0.84 63.17

As it can be been in Table 8.3, with respect to the clean speech environment
the WER has clearly grown for both genders, being the female results almost
twice as the male results. This ratio did not exist in the orignal environment.

For the male voices both the non enhanced speech results and the en-
hanced ones have incremented their WER in 6 points approximately, being
the enhanced results a point higher than the non enhanced results.

For the female voices, the enhanced results are slightly lower than the non
enhanced results, but they both almost double the male voices results. The
complete results are available with the “wn01” particle prepended to the
corresponding files in the “test/results” folder.

In summary, the white noise polluted speech samples decrease the per-
formance of the speech recognition system, being the female results much
more accentuated than the male ones. Let’s believe that exists a difference

8. Speech Recognition Results 108

between the noise polluted frequential ranges of the signals. In this environ-
ment, both these ranges have been equally affected: the vowels have been
polluted as the vowel formant frequencies are located below 2KHz and the
consonants have also been polluted as their frequencies range from 2KHz to
6KHz.

The speech enhancement module has had a little impact in this environ-
ment. It has contributed to the noise increase in the higher part of the
spectrum, thus emulating a kind of blue noise. Since the noise distribution
in this part of the spectrum is quite high, the signal to noise ratio is then
quite small small. Later on this new color of noise will be analysed, but
according to this results, the expectations are not very good.

The following subsections propose different noise environments to note
the difference (if there is any) between a high frequency or a low frequency
polluted speech recording when it comes to speech recogniton performance.

8.3.3 Blue noise polluted environment

This environment proposes a blue noise pollution that affects mainly the
consonants but still has some effect on the vowels. Blue noise is just high-
pass filtered white noise. It sounds really screechy and artificial. Blue noise’s
power density increases 3 dB per octave with increasing frequency (density
proportional to f) over a finite frequency range. Having set its maximum
peak at 0.01, Figure 8.2 shows the frequential plot of the blue noise produced
for the tests. Bear in mind that although the horizontal axis shows frequen-
cies they are rather angular frequencies and should be expressed in radians,
but for convenience, the Audacity’s notation is maintained.

If the results obtained with it are different (higher or lower) than the
results obtained with the white noise polluted environment, the proposed
supposition of frequential selectivity of noise pollution will be proved. Table
8.4 shows the performance summary statistics obtained.

As it is expected, the results vary from the previous environment, which
proves that noise pollution frequential selectivity affects the speech recog-
nition performance. Moreover, a concentration of the noise energy at the

8. Speech Recognition Results 109

Figure 8.2: Frequential analysis of blue noise

Table 8.4: Recognition results obtained in a blue noise polluted environment

Gender Process WER(%) Speed(×RT) Memory(MB)

Male
No SE 24.16 0.56 63.15
SE 24.64 0.82 63.12

Female
No SE 39.13 0.84 63.13
SE 38.26 0.86 63.15

higher part of the spectrum could induce to state that this part is more
sensitive to noise pollution as the results obtained are worse than with an
equal frequential noise distribution. This statement has to be compared to
its counterpart (the noise concentration at the lower part of the spectrum)
to be proven true.

The speech enhancement unit provides slightly better results for female
voices but slightly worse results for male voices. This time, the ratio between
the gender results is less than the double. Still, the results are unacceptable.

The complete results are available with the “bn01” particle prepended to
the corresponding files in the “test/results” folder.

8.3.4 Violet noise polluted environment

This environment proposes a violet noise pollution that affects only the
consonants. The energy distribution of this noise pollutes the higher part

8. Speech Recognition Results 110

of the spectrum. Violet noise’s power density increases 6 dB per octave
with increasing frequency (density proportional to f 2) over a finite frequency
range. Having set its maximum peak at 0.01, Figure 8.3 shows the frequential
plot of the violet noise produced for the tests.

Figure 8.3: Frequential analysis of violet noise

If the WER results obtained with it are even higher than the results ob-
tained with the blue noise polluted environment it will state that the more
noise pollution to the higher part of the spectrum the worse the recognition
results. Table 8.5 shows the performance summary statistics obtained.

Table 8.5: Recognition results obtained in a violet noise polluted environment

Gender Process WER(%) Speed(×RT) Memory(MB)

Male
No SE 28.99 0.79 63.13
SE 29.47 0.83 63.22

Female
No SE 44.35 0.85 63.12
SE 43.48 0.87 63.12

As it is shown in Table 8.5 the results are even worse: if the noise pollution
energy is displaced to the higher part of the spectrum, thus affecting the
consonants, the speech recognition results are badly worsened.

The complete results are available with the “vn01” particle prepended to
the corresponding files in the “test/results” folder.

8. Speech Recognition Results 111

8.3.5 Pink noise polluted environment

This environment proposes a pink noise pollution that affects both conso-
nants and vowels, with more presence on the latter. The energy distribution
of this noise pollutes mainly the lower part of the spectrum, but still has
some effect on the higher part. The frequency spectrum of pink noise is flat
in logarithmic space — this noise has equal energy decrease (or increase) per
octave (density proportional to f−1). This means that the volume decreases
logarithmically with frequency at the rate of 3 dB per octave. Usually pink
noise is made by low-pass filtering white noise but sounds more natural than
white noise (it sounds like rushing water or ocean surf) and is quite relax-
ing. It’s often used for ambience in electronic music, and as a test signal for
“tuning” sound reenforcement systems (many equalizers and audio spectrum
analyzers have built-in pink noise generators). Having set its maximum peak
at 0.01, Figure 8.4 shows the frequential plot of the pink noise produced for
the tests.

Figure 8.4: Frequential analysis of pink noise

If the results obtained with it are lower than the results obtained with the
blue or violet noise polluted environments it will state that the more noise
pollution to the lower part of the spectrum the better the results, as this
part is more robust. If the results obtained are similar to the blue noise
pollution it will state that the system is least degraded by noise pollution
when its distribution is non selective with frequency. Table 8.6 shows the
performance summary statistics obtained.

As it is shown in Table 8.5 the results are most shocking: not only the
WER is lower than in the blue noise pollution environment, it is even lower

8. Speech Recognition Results 112

Table 8.6: Recognition results obtained in a pink noise polluted environment

Gender Process WER(%) Speed(×RT) Memory(MB)

Male
No SE 9.66 0.72 63.15
SE 9.18 0.73 63.12

Female
No SE 18.26 0.66 63.13
SE 16.52 0.75 63.14

than in the acoustic insulated environment.

In this situation the speech enhancement module provides an improvement
in both genders, although in the female the improvement is greater despite
of the higher value (0.5% vs. 1.7%).

This is a strange environment, it doesn’t make much sense to obtain better
results than with the original recordings. One possible situation where the
addition of noise produces a positive effect is the “dithering” when quantizing
a very low signal, but this is not exaclty the same case. Maybe this WER
improvement has something to do with it, or the fact that pink noise is used
for tuning reenforcement systems as desribed above.

The complete results are available with the “pn01” particle prepended to
the corresponding files in the “test/results” folder.

8.3.6 Red noise polluted environment

This environment proposes a red noise pollution that affects vowels exclu-
sively. The energy distribution of this noise pollutes the lower part of the
spectrum. It could be viewed as the counterpart of violet noise. Red noise is
a very bassy (heavily low-pass filtered) kind of noise. This sounds like a low
rumble — a subway train going by or a noisy air-conditioning system. The
definition of red noise is not as precise as that of white and pink noise, and
the term mostly refers to low-pitched noises. It has a power density decrease
of 6 dB per octave with increasing frequency (density proportional to f−2).
Brown noise is also the sound made by a “random walk” which makes the

8. Speech Recognition Results 113

amplitude of a waveform travel up and down at random. It can be generated
by an algorithm which simulates Brownian motion or by integrating white
noise. Having set its maximum peak at 0.01 Figure 8.5 shows the frequential
plot of the red noise produced for the tests.

Figure 8.5: Frequential analysis of red noise

It is expected that with this new environment the results may be lower
than with the pink noise environment, sticking to the supposition that the
lower part of the spectrum is the most robust one and by draining all noise
sources the results will be most splendid. Table 8.7 shows the performance
summary statistics obtained.

Table 8.7: Recognition results obtained in a red noise polluted environment

Gender Process WER(%) Speed(×RT) Memory(MB)

Male
No SE 20.29 0.82 63.12
SE 23.67 0.95 63.15

Female
No SE 35.65 0.82 63.20
SE 39.13 0.79 63.26

As it is can be seen in Table 8.7 the results do not correspond to the expec-
tations: the results are worse than in the pink noise pollution environment.
But anyway, they are not as bad as with the violet noise pollution or even the
blue noise pollution (now the comparison can be made), which means that
the lower part is indeed more robust that the higher part. But according to
this last experiment, the WER reaches a lower bound limit that is reached

8. Speech Recognition Results 114

by focusing the pollution on the vowels but still leaving some noise for the
consonants.

The complete results are available with the “rn01” particle prepended to
the corresponding files in the “test/results” folder.

8.3.7 Grey noise polluted environment

This environment proposes a grey noise pollution that affects both vowels
and consanants in a special manner. The energy distribution of this noise fol-
lows a psychoacoustic equal loudness curve (such as an inverted A-weighting
curve) over a given range of frequencies, giving the listener the perception
that it is equally loud at all frequencies. Having set its maximum peak at
0.01 Figure 8.6 shows the frequential plot of the grey noise produced for the
tests.

Figure 8.6: Frequential analysis of grey noise

From the previous results it is expected that with this new environment
the results may be quite similar to the results obtained for the white noise
pollution environment. The decrease in energy of the central part of the
spectrum is distributed to the edges thus becoming a distribution 50% similar
to the blue noise and 50% similar to the pink noise. Table 8.8 shows the
performance summary statistics obtained.

As it is can be seen in Table 8.8 the results are more similar to the ones
obtained with the blue noise pollution than with the white noise pollution.
Anyway, it’s not surprising that the performance decreases despite of the
impovement that the speech enhancement unit introduces in the male voices.

8. Speech Recognition Results 115

Table 8.8: Recognition results obtained in a grey noise polluted environment

Gender Process WER(%) Speed(×RT) Memory(MB)

Male
No SE 23.19 0.77 63.16
SE 21.74 0.86 63.15

Female
No SE 36.52 0.91 63.12
SE 36.52 0.91 63.32

The complete results are available with the “gn01” particle prepended to
the corresponding files in the “test/results” folder.

8.3.8 Babble noise polluted environment

This subsection proposes a babble noise polluted environment obtained
from a cafeteria of an IKEA store in Germany. The sound sample has
been obtained from “the Freesound Project”, its name is “IKEA Cafete-
ria.wav” and it has been added by “inchadney” on March 4, 2007, available
at http://www.freesound.org.

This audio file has required a little more processing than the others. First,
it has been converted from stereo to mono, then amplified to use the whole
dynamic range, then downsampled and finally changed its speed, thus af-
fecting both Tempo and Pitch using a 175% change. This last step was not
necessary for the noise samples, because the downsampling does not change
the stochastic properties of the signal. Finally, having set its maximum peak
at 0.01, Figure 8.7 shows the frequential plot of the babble noise produced
for the tests.

This environemnt is insteresting because it is based on the real world: the
sample babble noise used is the clean recording of a cafeteria. Table 8.9
shows the performance summary statistics obtained.

As it is can be seen in Table 8.9 the results are just slightly worse than
with the acoustic insulation. They are not still as bad as with the white noise
polluted environment, but the speech enhancement unit does not provide

8. Speech Recognition Results 116

Figure 8.7: Frequential analysis of babble noise

Table 8.9: Recognition results obtained in a babble noise polluted environ-
ment

Gender Process WER(%) Speed(×RT) Memory(MB)

Male
No SE 18.36 0.66 63.15
SE 18.84 0.85 63.12

Female
No SE 26.09 0.78 63.12
SE 30.44 0.93 63.12

any improvement compared to the non enhanced speech. The only aspect to
highlight is that while the majority of samples have got worse (with respect
to the acoustic insulation results), the male enhanced speech has remained
almost the same.

The complete results are available with the “babble01” particle prepended
to the corresponding files in the “test/results” folder.

8.3.9 Babble noise mixed with pink noise polluted en-
vironment

This subsection proposes a noise mixture between babble noise pollution
and pink noise pollution. The reason to do it comes from the good results
obtained with a pink noise polluted environment. It intends to profit from
the stochastic characteristics of pink noise to surpass the problems that arise
in other noise polluted environments.

8. Speech Recognition Results 117

The idea is that a new speech enhancement submodule is produced and set
in front of the existing speech enhancement chain. This submodule produces
pink noise continuously that is mixed with the incoming speech, which is
the babble noise in this environment. The new signal statistic characteristics
should provide a performance increase in the speech recognition system, if
this systems proves to be working successfully.

Setting the noise mixture’s maximum peak at 0.01, Figure 8.8 shows the
frequential plot of the babble noise mixed with pink noise produced for the
tests.

Figure 8.8: Frequential analysis of babble noise mixed with pink noise

As it can be seen in Figure 8.8 the babble noise has almost been completely
masked by the pink noise, which has a higher power level. The stochastic
nature of pink noise does not change the statistic properties of the speech sig-
nals. Thus, the speech recognition system can process the data successfully.
As pink noise has yielded the best results, it’s logic to believe that the re-
sulting noise distribution (babble + pink) yields better results than with the
original noise distribution alone (babble). Table 8.10 shows the performance
summary statistics obtained.

As it is can be seen in Table 8.10 the results are just slightly worse than with
pink noise alone, being still better than the clean speech signals recognition
results.

The addition of the pink noise generator before the existing speech en-
hancement unit proves to be a valid new enhancement method to improve

8. Speech Recognition Results 118

Table 8.10: Recognition results obtained in a babble noise mixed with pink
noise polluted environment

Gender Process WER(%) Speed(×RT) Memory(MB)

Male
No SE 11.59 0.73 63.14
SE 11.59 0.89 63.15

Female
No SE 23.48 0.95 63.12
SE 22.61 0.93 63.20

the recognition results, at least for this system and in the presence of babble
noise.

The complete results are available with the “babble01 pn01” particle
prepended to the corresponding files in the “test/results” folder.

The addition of pink noise is though a strange way of achieving good
speech recognition results. Let’s be prudent and don’t generalize: maybe the
improvement is only manifest in a local environment. This last statement
has to be demonstrated in order to validate it or reject it otherwise.

Let’s suspect that the addition of pink noise modifies the signals in such
a way that when scored against the acoustic models the values obtained are
high. This is possible, good speech recognition results would be obtained but
that wouldn’t imply that the new system is valid for any case. The problem is
that the original training speech recordings, the ones used in the production
of the WSJ acoustic models, are not freely available. Thus, they cannot be
analysed in order to determine if they have an inherent pink-like noise that
would justify the improvements obtained.

In order to overcome this inconvenience, another set of acoustic models is
used for this experiment: the Resource Management (RM1) acoustic models.

8. Speech Recognition Results 119

8.4 Regression tests results using the Re-

source Management acoustic models

This section is dedicated to the results and the conclusions that can be ex-
tracted from the new conducted regression tests using the Resource Manage-
ment (RM1) acoustic models available in the downloads section of Sphinx-4.

These acoustic models have been created with the Resource Management
database published by the LDC (Linguistic Data Consortium), who does not
allow redistribution of the audio. Nevertheless, LDC offers a few acoustic
samples before the whole set is bought, but anyway, these won’t even be
necessary to demonstrate the existence of a dependency of the results with
the acoustic models (and the features of the training sequences used).

The Resource Management (RM1) speech samples, authored by P. Price,
W.M. Fisher, J. Bernstein and D.S. Pallett, consist of read sentences mod-
eled after a naval resource management task. The complete corpus contains
over 25000 utterances from more than 160 speakers representing a variety of
American dialects. The material was recorded at 16KHz with 16-bit resolu-
tion. This database is not as abundant as the WSJ, it is rather labeled as
a Medium Vocabulary database. Note that while the RM1 database weights
8.4MB, the WSJ database weights 11MB.

The file named “RM1 13dCep 16k 40mel 130Hz 6800Hz.jar” is located at
the “sphinx4” package in the downloads page of the project, hosted at Source-
Forge.net. This package contains the acoustic models created with the RM1
database. In Magnus, it can be found in the “lib” folder.

In order Magnus to use these models, in the “test/configfiles” folder, the
configuration files “deptedu.config.<nose|se>.rm1.xml” have been prepared
to do so.

In order to run the tests and retrieve the results, the modus operandi is
the same as the previous section.

8. Speech Recognition Results 120

8.4.1 Acoustic insulated environment

The first situation proposed is the speech recordings in the acoustically
insulated environment, as a reference of the performance of the system (using
the new set of acoustic models) in the most favorable environment. Table
8.11 shows the obtained results.

Table 8.11: Recognition results obtained in an acoustic insulated environ-
ment

Gender Process WER(%) Speed(×RT) Memory(MB)

Male
No SE 33.82 0.07 31.16
SE 38.65 0.07 32.19

Female
No SE 42.61 0.08 29.92
SE 45.22 0.08 28.96

As it can be seen in Table 8.11 the resulting WER is not low at all, worse
than with the WSJ acoustic models (33.82% vs. 15.94% for male speech
with no S.E. and 42.61% vs. 22.61% for female speech with no S.E.), and
the speech enhancement process does not improve the results, it makes them
even worse. These results respond to the mid-size vocabulary database, the
smaller the training set, the less accurate the acoustic models. The only
positive aspect of having inaccurate acoustic models is the fast processing
of the data (0.07×RT vs. 0.7×RT) and the low memory footprint of the
system (31MB vs. 63MB). On certain applications (such as resource-limited
devices) these facts would be in a trade-off situation, but on Magnus this is
not the case: accuracy is priorized all the time.

The complete results are available with the “original” particle prepended
to the corresponding files in the “test/results” folder. Note at the ending of
these files, the “rm1” particle to distinguish the files that correspond to this
section from the files that correspond to the previous section, which have the
“wsj” particle instead.

8. Speech Recognition Results 121

8.4.2 Pink noise polluted environment

This is the most critical environment: on one side, if the results obtained
here yield a recognition improvement then the addition of pink noise actually
proves to be a means of speech enhancement; on the other side, if the results
yield a recognition decrease then the pink noise addition only proves to in-
crease the recognition performance on a particular environment, not being a
generic method of speech enhancement applicable to other situations. Table
8.12 shows the obtained results.

Table 8.12: Recognition results obtained in a pink noise polluted environment

Gender Process WER(%) Speed(×RT) Memory(MB)

Male
No SE 30.92 0.07 32.65
SE 35.27 0.06 33.12

Female
No SE 46.09 0.07 32.58
SE 48.70 0.07 32.94

As it can be seen in Table 8.12 the WER results are generally worse than
with the acoustic insulation. Although the male speech recordings have re-
sulted in a light increase (30.92% vs. 33.65% with no S.E. and 35.27% vs.
38.65% with S.E.), the female speech recordings have worsened considerably
(46.09% vs. 42.61% with no S.E. and 48.70% vs. 45.22% with S.E.). These
are not the splendid results that were supposed to appear if the addition of
pink noise had a speech enhancement effect in all environments.

The complete results are available with the “pn01” particle prepended to
the corresponding files in the “test/results” folder.

In summary, according to the experiments carried out with the RM1 acous-
tic models, the addition of pink noise to the speech signals doesn’t improve
the system’s recognition accuracy, although with the WSJ acoustic models
the effect seems to be the contrary. This fact may be attributed to the re-
sulting features of the speech and pink noise mixtures, they must resemble
the original speech training samples in some way, and then, since the speech

8. Speech Recognition Results 122

recognition system makes use of statistic methods to score the similarity be-
tween the incoming speech utterances and the acoustic models the resulting
scores end up being more accurate.

The addition of pink noise may not be a generic speech enhancement
method, but since the recognition results with the WSJ acoustic models
seem to be more accurate than without the pink noise addition, and Magnus
makes use of these WSJ acoustic models to perform the recognitions, the use
of the pink noise addition to the incoming speech is justified.

8.5 Regression tests results using the WSJ

acoustic models and an internal pink

noise generator

This section brings to practice the idea of adding pink noise to the incoming
speech utterances in order to obtain better recognition results when scored
against the WSJ acoustic models. This method is only appropriate for the
WSJ acoustic models, other acoustic models (such as the RM1 tested in the
previous section) don’t yield any better results.

In order to generate pink noise, the Voss algorithm is proposed. The fol-
lowing subsections deal with the description of this algorithm, its application
in the development of Magnus and the results obtained with it.

8.5.1 Voss algorithm

This algorithm is described in [Gardner, 1978]. It creates pink noise by
adding a series of white noise sources at successively lower octaves.

The Voss algorithm adds up several uniform random number generators
that are evaluated in octave time intervals. The pattern that is seen in
Table 8.13 shows (discrete) time moving horizontally to the right, and each
line being a random number, or rather a square-wave sampled white noise
source. Every pattern sample contains a white noise sample. Each row is
updated at half the rate of the row above and the top row is updated every
sample.

8. Speech Recognition Results 123

Table 8.13: Pattern of evaluation of the random number generators

x x x x x x x x x x x x x x x x x
x x x x x x x x x
x x x x x
x x x
x x

Each column in Table 8.13 represents a discrete time instant. Then, in
order to produce the desired pink noise, at each time instant the sum of the
different white noise sources (each row of the table) are summed.

By modelling each row as a sample and hold, or zero order hold (ZOH),
applied to a white noise source, it is possible to work out each row’s contri-
bution to the overall spectrum. The output of the pink noise generator is
then the sum of N rows. In Table 8.13, N equals 5.

Note that the analytic resolution of these functions is not trivial. Let’s
rather follow a numeric method, because it is possible to experimentally
determine the Power Spectral Density (PSD) of the resulting pink noise by
taking the DFT of a number of samples of the pink noise generator.

In order to do so, the file “test/tools/PinkNoiseNumbers.java” has been
coded to ease the process. This source code file has to be manually compiled
with the command:

javac PinkNoiseNumbers.java

Once the binary file “PinkNoiseNumbers.class” is produced, the pro-
gram is launched with the command:

java PinkNoiseNumbers

This piece of code implements the Voss algorithm in Java and produces a
set of 704000 samples, that correspond to an audio length of 44 seconds with

8. Speech Recognition Results 124

a sampling frequency of 16KHz. This audio length is more of less the same
as the audio length of the rest of the noise sound files prepared for the tests.
The amount of data that contains should be enough to produce accurate
statistics. Nota that the pink noise produced is set to a range of ‘327’, which
corresponds to the 0.01 value in proportion to the dynamic range of the signal
(215), like the rest of the noises prepared for the tests, thus 0.01 · 215 = 327.

In order to obtain a text file with all the files generated by PinkNoiseNum-
bers, the standard output is redirected to a file named “data” with the
following command:

java PinkNoiseNumbers > data

Once the data file is ready, Scilab is used to produce a WAV file with the
noise generated by PinkNoiseNumbers. The whole code used is shown as
follows:

da = read(’data’,-1,1);

t = da - mean(da);

tt = t./max(t);

wavwrite(tt’,16000,’voss pink noise’)

The short code shown above first loads the file in a variable named ‘da’,
then substracts the mean of the data to all the values and stores the resulting
vector in a variable called ‘t’, then normalizes the resulting wave and finally
writes the WAV audio file named “voss pink noise.wav”.

Afterwards, Sox is used to convert the resulting WAV file into a low volume
RAW file as seen previously and finally Audacity is used to perform the
frequential analysis on the resulting audio (pink noise). Figure 8.9 shows the
spectral plot of the resulting pink noise distribution.

As it can be seen in Figure 8.9, at first sight there’s no much difference
between this plot and the plot obtained for the previous pink noise. So, it is
assumed that the Voss algorithm generates pink noise successfully. Let’s see
how it behaves with the speech recognition system in the following subsec-
tions.

8. Speech Recognition Results 125

Figure 8.9: Frequential analysis of the pink noise generated by the Voss
algorithm

Please refer to [Gardner, 1978] for further details about the Voss algorithm.

8.5.2 Pink noise generator implementation

The implementation of the pink noise generator in Java for Magnus is
based on the Voss algorithm.

A first general implementation of the pink noise generator is produced
(“src/PinkNoiseGen.java”) to then instantiate it and use it in a new module
for the frontend pipeline of Magnus (“src/PinkNoiseAdd.java”).

Note that the pink noise numbers produced by the internal generator range
from 0 to 327 as calculated previously. In order to transform these numbers
to actual pink noise, a similar procedure to the procedure prepared in Scilab
has to be applied in this new module: the pink noise numbers are substracted
the mean of the distribution (which equals µ = 159.7705) and the result is
multiplied by 2 in order to reach the 1% of noise signal aimed for all the rest
of the test noises. Equation (8.2) describes this prodeure mathematically.

y[n] = x[n] + 2 · (pink noise number[n]− µ) (8.2)

Finally a new configuration file is prepared (“dept-
edu.config.se.wsj.apn.xml”) in order to use this module in the new
configuration for Magnus. The results obtained with this new architecture
are shown in the following section.

8. Speech Recognition Results 126

8.5.3 Impact of the internal addition of pink noise

The several tests proposed in the previous sections are run again with the
new configuration for Magnus in order to determine the degree of improve-
ment, in the case that there is any. The procedure is the same using the
new configuration file. The results of the recognitions are dumped in the
“test/results” folder with the “apn” particle appended to the corresponding
files.

Table 8.14 compares the several results obtained with the new configura-
tion to the best results obtained with the previous configuration. Note that
the new configuration uses the WSJ acoustic models, the speech enhance-
ment modules and the new internal pink noise generator based on the Voss
algorithm.

Table 8.14: Results obtained with the internal pink noise generator (PNG)

Acoustic environment Male speech WER(%) Female speech WER(%)
Insulation 7.73 vs. 15.94 18.26 vs. 22.61
White noise pollution 28.50 vs. 21.74 40.00 vs. 40.00
Blue noise pollution 18.84 vs. 24.16 36.52 vs. 38.26
Violet noise pollution 20.77 vs. 28.99 36.52 vs. 43.48
Pink noise pollution 21.26 vs. 9.18 33.91 vs. 16.52
Red noise pollution 19.32 vs. 20.29 32.17 vs. 35.65
Grey noise pollution 22.22 vs. 21.74 32.17 vs. 36.52
Babble noise pollution 20.77 vs. 18.36 33.04 vs. 26.09

2WER(%) with PNG vs. WER(%) without PNG

In order to clarify the deviations of the results shown in Table 8.14, the
differences between the values of the best old recognition results and the
values of the new recognition results are displayed on a chart in Figure 8.10.

One of the first things that stick out in the chart shown in Figure 8.10 is
that the results in the babble noise polluted environment are not the same as
the results obtained with the babble noise and pink noise mixture analysed

8. Speech Recognition Results 127

Figure 8.10: Results deviations with respect to the abscence of the pink noise
generator

previously without an internal pink noise generator (a WER of 20.77% and
33.04% vs. 11.59% and 22.61%). This may be due to the precision of the
arithmetic and the conditioning of the equations in the algorithms, apart
from the imprecisions introduced by the approximation to pink noise of the
Voss algorithm. In the present architecture the noises mixture takes place in
the frontend of Magnus while previously it took place in Sox having prepared
the audio samples with Audacity. Different initial conditions lead to different
results, obviously.

Analysing the chart as a whole, with the internal pink noise generator
only three out of eight environments show a decrease in the accuracy of the
system. Curiously, the worst results correspond to the pink noise polluted
environment, which indicates that the increase in accuracy shown in the
previous tests is also dependent with the amplitude of the noise, as is shown
than an excess of pink noise pollution produces the worst results.

The remaining five (out of eight) acoustic environments justify the use of
the internal pink noise generator. Let’s highlight the results obtained with
the acoustic insulated environment: while originally the WER is 15.94% and
22.61%, these rates are improved with the external addition of pink noise
achieving 9.18% and 16.52%, but with the internal addition of pink noise
the rates even decrease to 7.73% and 18.26% (the recognition enhancement

8. Speech Recognition Results 128

only happens in the male voices, but considering that the external addition
of pink noise is a kind of imaginary situation, the improvement should be
evident).

In summary, as shown in the previous results, the internal addition of
pink noise generally yields better results than without any noise addition.
That’s why the main configuration file for Magnus makes use of the pink
noise generator. Despite of the poor recognition results obtained, it must be
considered that the subjects of study for the experiments had no experience at
all with the program. Once an user gets accustomed to dealing with Magnus,
inconsciously gets improving his/her speech to gain a higher control over the
application.

Chapter 9

Conclusions and Future Work

This is the last chapter of the thesis. It first deals with the conclusions
obtained through the study and development of Magnus, a speech voice recog-
nition system to control the mouse pointer and arrow keys of a keyboard with
Catalan voice commands. Lastly, merged with the conclusions, the future
work for the project conclude the thesis.

The Preface of this thesis states some goals that now shall be revised. The
development of a Java application to control de mouse pointer of a PC has
been accomplished, the mathematical theory concepts have been collected,
understood to an extent, and explained in this thesis, which in its turn also
explains in detail the development of this application. These objectives have
been successfully achieved: Magnus runs fairly well and the documentation
is fairly abundant and complete. They have some limitations, though, but
the temporal restriction to hand in this thesis has keept some improvements
still in the “to-do” list.

Firstly, relating to the GNU/Linux development environment. The ex-
perience of working under a UNIX-like platform couldn’t have been more
splendid. The trade-off between the complexity of the system and the poten-
tiality that it offers grows bigger from day to day. It has been of crucial use
for the production of this software application. Moreover, the high scalability
that the system offers has enabled such an intensive processing application
to run on resource limited computers.

9. Conclusions and Future Work 130

Relating to Java, it is a very powerful programming language, without a
doubt. The object-oriented programming and strict typification attributes
enable the code to be most organized, thus permitting an useful and intelligi-
ble source code distribution. The virtual machine that runs the applications
allows the program to be fairly independent of the host system, thus eas-
ing the monitoring processes. The multi-platform portability of the code is
direct, once the (binary) bytecodes are obtained, they can be directly dis-
tributed. The vast amount of documentation on the Interet permits the
learning of a whole new bunch of possibilities. The only setback for code
purists is the automatic memory management. This may be somewhat a
flaw, if the programmer aims to have a complete contol of the memory al-
location processes involved, mostly for optimization processes. The lack of
the programmer’s control mechanisms to manage memory may derive in ex-
cessive memory footprints, which in no case are of any good. Please refer to
[Kuzemin et al., 2003] for another point of view of the pros and cons of using
Java in scientific ccomputations.

Relating to Sphinx-4, the speech recognition engine used in Magnus to
perform the recognition processes. This is a magnificient tool. At first, it may
look a bit odd, due to the lack of documentation, especially when compared
to HTK. But as one delves into the program discovers a most complete
application that is worth to learn. Sphinx-4 gets the most out of Java, it
profits from all the elegant advantages that the programming language offers,
thus producing, in turn, an elegantly coded speech recognition engine. By the
use of the Java interfaces, Magnus extends its modules to create the whole
set of new speech enhancement processes to perform the research activities.
It yields very good means of plug-and-play architecture that facilitates the
testing experiments, as well as a whole set of instrumentation tools to score
the quality of the system.

Relating to the acoustic models used by Magnus, these acoustic models
have been created with American English speakers, with lots of different
dialects, indeed, but the language used in Magnus is Catalan, not English.
This aspect will prevent Magnus from achieving high accuracy results, in
principle. As it is common sense, and also demonstrated in the previous
chapters of this thesis, the recognition results are highly dependent with the
acoustic models. It is obvious that if the acoustic models had been “recorded

9. Conclusions and Future Work 131

in” Catalan the results would have been better (but considering that the
subjects that collaborated in the project for the tests had no experience at
all with the program, the obtained results may not be that bad). Since
this seemed to be an obvious statement, the goals of Magnus were focused
on other aspects of the speech recognition chain (making use of the speech
enhancement techniques) in order to improve the results, but the creation of
a good database in Catalan to train a new set of acoustic models is one of
the aspects that could improve the performance of Magnus.

Relating to the speech enhancement modules proposed. The practice tests
conducted conclude that the effect of the three speech enhancement modules
developed have little enhancement effects on the speech recognition results,
maybe a deeper investigation on the ambient noise conditions would have
revealed something of interest to improve them. Fortunately, while running
some tests it was discovered that with the addition of pink noise to the
incoming speech signals the accuracy results were improved. This may seem
substantially crazy, the addition of noise goes in the opposing direction of
the classic goals in engineering! But it makes sense when the environment,
the speech recognition engine, works statistically. If the acoustic models had
been trained with noise polluted speech samples, then it would make sense
to add noise to the testing speech samples in order to score higher accuracy
results. This is a supposition that has not been proved since these training
samples, the Wall Street Journal database, are not freely available.

Relating to the pink noise generator. The Voss algorithm produces pink
noise but the obtained results with this pink noise, or possible approxima-
tion to pink noise, are not as good as expected. Apart from the direct and
naive attributions to the precision of the arithmetic and the conditioning of
the equations of the algorithms, this fact could be attributed to the order
that the random generators change the load in the Voss algorithm. Some
pink noise samples add up more random variables than others (see the pat-
tern related to the Voss algorithm in the previous chapter) and this can
cause large discontinuities in the wave when lots of the values change at
once. In order to overcome this possible problem, other algorithms such as
the Voss-McCartney algorithm would have to be tested and analyzed in de-
tail. More information about the Voss-McCartney algorithm is available at:
http://www.firstpr.com.au/dsp/pink-noise/.

9. Conclusions and Future Work 132

Relating to the grammars. Magnus uses single word command-like con-
structs to interact with the speech recognition engine. This results in simpler
grammar graphs that provide faster results, but this may induce the system
to compute more errors. In order to improve the system’s accuracy with this
aspect, some research would have to be conducted with the aim of developing
more complex grammars.

Relating to the documentation. In order to produce high quality doc-
umentation, the LATEX typesetting system has been chosen to do the job.
It includes features designed for the production of technical and scientific
documentation. LATEX is the de facto standard for the communication and
publication of scientific documents, and since this thesis aims to provide a
high quality source of information of the speech recognition application de-
signed, as stated in the Preface, the choice of LATEX is almost direct. The
structurization, citation and referensation requirements have been covered
by LATEX with great success.

Finally, there is some other future work, in the form of improvements, that
don’t fit in the general aspects discussed in the previous paragraphs. They
are listed in the following “to-do” list:

• Client-server architecture migration: this interesting feature would pro-
vide an additional degree of scalability.

• Language portability through Java I18N: the internationalization of
Magnus would enable the application to be used by a larger community
of end-users.

• Visual interface: the use of the SWING library instead of AWT would
display a nicer look and feel (the graphical user interface).

Magnus is free software. It can be redistributed, studied and modified
under the terms of the GNU General Public License as published by the Free
Software Foundation, either version 3 of the License, or (at the user’s option)
any later version. Magnus hopes to be useful to society and welcomes any
volunteer to improve the application by fixing the cited improvements and/or
proposing any (of the many) improvements that the program still needs.

Bibliography

[Adbulla and Kasabov, 2001] Abdulla, W. H. and Kasabov, N. K., “Improv-
ing speech recognition performance through gender separation”, Ar-
tificial Neural Networks and Expert Systems International Confer-
ence (ANNES), pp. 218–222, 2001, Dunedin (New Zealand).

[Colton, 2003] Colton, D., “Automatic Speech Recognition Tutorial”, Un-
dergraduate elective course in Automatic Speech Recognition (CS
441) taught at Brigham Young University Hawaii, June 2003, Laie,
Hawaii (U.S.).

[Davis and Mermelstein, 1980] Davis, S. and Mermelstein, P., “Comparison
of parametric representations for monosyllabic word recognition in
continuously spoken sentences”, IEEE Transactions on Acoustics,
Speech and Signal Processing, (ISSN: 0096-3518), vol. 28 (4), pp.
357–366, August 1980, Santa Barbara, California (U.S.).

[Dugad and Desai, 1996] Dugad, R. and Desai, U. B., “A tutorial on Hid-
den Markov Models”, Technical Report No.: SPANN-96.1, Indian
Institute of Technology, May 1996, Bombay (India).

[Fant, 1970] Fant, G., “Acoustic Theory of Speech Production: With Calcu-
lations Based on X-Ray Studies of Russian Articulations”, (ISBN:
978-9027916006), Mouton, 2nd Edition, 1970, The Hague (The
Netherlands).

[Gardner, 1978] Gardner, M., “White and Brown Music, Fractal Curves and
One-Over-f Fluctuations”, Mathematical Games, Scientific Ameri-
can, pp. 16–32, April 1978, New York, New York (U.S.).

[Ghahramani, 1998] Ghahramani, Z., “Learning Dynamic Bayesian Net-
works, Adaptive Processing of Sequences and Data Structures”,

Bibliography 134

Lecture Notes in Artificial Intelligence, (ISBN: 978-3-540-64341-8),
Springer-Verlag, vol. 1387, pp. 168–197, 1998, Toronto (Canada).

[Gouvea et al., 2004] Walker, W., Lamere, P., Kwok, P., Raj, B., Singh, R.,
Gouvea, E., Wolf, P. and Woelfel, J., “Sphinx-4: A Flexible Open
Source Framework for Speech Recognition”, SML Technical Report
Series, No. TR-2004-139, Sun Microsystems Laboratories, Novem-
ber 2004, (U.S.).

[Hwang and Huang, 1993] Hwang, M. Y. and Huang, X., “Shared-
distribution hidden Markov models for speech recognition”, IEEE
Transactions on Speech and Audio Processing, (ISSN: 1063-6676),
vol. 1 (4), pp. 414–420, October 1993, Pittsburgh, Pennsylvania
(U.S.).

[Knuth, 1964] Knuth, D. E., “Backus Normal Form vs. Backus Naur Form”,
Communications of the ACM, (ISSN: 0001-0782), vol. 7 (12), pp.
735–736, December 1964, Pasadena, California (U.S.).

[Kuzemin et al., 2003] Kuzemin, A. Ya., Minajlo, N. D., Safonov, I. M. and
Shulika, A. V., “Using Java in ingeneering and scientific compu-
tations and in designing systems”, 5th International Workshop on
Laser and Fiber-Optical Networks Modeling, 2003. Proceedings of
LFNM 2003, (ISBN: 0-7803-7709-5), pp. 93–94, September 2003,
Alushta, Crimea (Ukraine).

[Kybic, 1998] Kybic, J., “Kalman Filtering and Speech Enhancement”, Mas-
ter’s Thesis, Czech Technical University, 1998, Prague (Czech Re-
public).

[Lieberman, 2002] Lieberman, H., “Common Sense Reasoning for Interac-
tive Applications”, MIT Media Lab Course, 2002, Cambridge, Mas-
sachusetts (U.S.).

[Nawab and Quatieri, 1987] “Short-time Fourier transform, Advanced top-
ics in signal processing”, Prentice-Hall Signal Processing Series,
(ISBN: 0-13-013129-6), Prentice-Hall, pp. 289–337, 1987, Upper
Saddle River, New Jersey (U.S.).

[Oppenheim et al., 1983] Oppenheim, A. V., Schafer, R. W. and Buck, J.
R., “Signals and Systems”, Prentice-Hall Signal Processing Series,

Bibliography 135

(ISBN: 978-0137549207), Prentice Hall, 1st Edition, 1983, New Jer-
sey (U.S.).

[Rabiner, 1989] Rabiner, L. R., “A Tutorial on Hidden Markov Models and
Selected Applications in Speech Recognition”, Proceedings of the
IEEE, (ISSN: 0018-9219), vol. 77 (2), pp. 257–286, February 1989,
Murray Hill, New Jersey (U.S.).

[Rabiner and Juang, 1991] Rabiner, L. R. and Juang, B. H., “Hidden
Markov Models for Speech Recognition”, Technometrics, vol. 33 (3),
pp. 251–271, American Statistical Association, August 1991, Mur-
ray Hill, New Jersey (U.S.).

[Schmidt-Nielsen et al., 2004] Divi, V., Forlines, C., Van Gemert, J., Raj,
B., Schmidt-Nielsen, B., Wittenburg, K., Woefel, J., Wolf, P. and
Zhang, F., “A Speech-In List-Out Approach to Spoken User In-
terfaces”, Proceedings of Human Language Technology Conference
(HLT 2004), pp. 113–116, Association for Computational Linguis-
tics, May 2004, Boston, Massachusetts (U.S.).

[Seltzer, 2003] Seltzer, M., “Microphone Array Processing for Robust Speech
Recognition”, Ph.D. Thesis, Carnegie Mellon University, July 2003,
Pittsburgh, Pennsylvania (U.S.).

[Shankar Chanda and Park, 2007] Shankar Chanda, P. and Park, S., “Speech
Intelligibility Enhancement Using Tunable Equalization Filter”,
IEEE International Acoustics, Speech and Signal Processing,
(ISSN: 1520-6149), (ISBN: 1-4244-0728-1), vol. 4, pp. 613–616,
April 2007, Honolulu, Hawaii (U.S.).

[Takeda et al., 1998] Takeda, K., Ogawa, A. and Itakura, F., “Estimating
Entropy of a Language from Optimal Insertion Penalty”, 5th Inter-
national Conference on Spoken Language Processing, paper 0456,
November-December 1998, Sydney (Australia).

[Viterbi, 1967] Viterbi, A. J., “Error bounds for convolutional codes and an
asymptotically optimum decoding algorithm”, IEEE Transactions on
Information Theory, (ISSN: 0018-9448), vol. 13 (2), pp. 260–269,
April 1967, Los Angeles, California (U.S.).

Bibliography 136

[Woltzenlogel, 2007] Woltzenlogel, B., “An Approximate Gazeteer for GATE
based on Levenshtein Distance”, Proceedings of the Twelfth ESSLLI
Student Session, pp. 200, August 2007, Dublin (Ireland).

[Young et al., 1989] Young, S. J., Russell, N. H. and Thornton, J. H. S.,
“Token Passing: A simple conceptual model for connected speech
recognition systems”, Technical Report CUED/FINFENG/TR38,
Cambridge University, July 1989.

[Young et al., 2006] Young, S., Evermann, G., Gales, M., Hain, T., Kershaw,
D., Liu, X., Moore, G., Odell, J., Ollason, D., Povey, D., Valtchev,
V. and Woodland, P., “The HTK Book (for HTK Version 3.4)”,
Cambridge University Engineering Department, December 2006,
Cambridge (U.K.).

Thematic Index

accuracy, 29
acoustic likelihood, 14
acoustic score, 14
acronym

ADC, 7
AI, 33
ANN, 11
APF, 80
ASR, 2
AWT, 65
BFS, 54
BNF, 49
CFG, 53
CMN, 46
CVS, 72
DAG, 17
DAW, 103
DCT, 6
DFT, 37
DSP, 33
DTW, 11
FFT, 37
FT, 44
GUI, 64
HMM, 11
HTK, 32
IT, vi
JSGF, 70
JVM, 32
JWS, vi

LPC, 37
LW, 29
MFCC, 5
ML, 13
PCM, 90
PLP, 37
PNG, 126
PSD, 123
RCT, 37
RM1, 119
RMS, 77
SNR, 57
STFT, 5
TWML, 44
WER, 30
WIP, 29
WSJ, 91
XML, 37, 67
ZOH, 123

algorithm
baum-welch, 20
Dynamic Time Warping, 11
forward-Backward, 18
Viterbi, 25
Voss, 122

aliasing, 7
allophone, 8
Audacity, 90

Bakis topology, 21
bigram, 28

Thematic Index 138

cepstral coefficients, 5
confusion matrix, 22

de-esser, 83
decoding, 14
dynamic programming, 25

embedded training, 25
error

deletion, 97
insertion, 97
substitution, 97

features extraction, 5
filter

active, 7
Kalman, 7
mel, 5

formant, 8
frames, 5

grammar, 9

hard-knee, 84
homophone, 9

isolated training, 25

language model, 14
language score, 14
Levenshtein distance, 100
log mel spectrum, 6

Mel Scale, 5
mel scale, 5
mel spectrum, 5
mondegreen, 9
morpheme, 8

N-gram, 28
noise

babble, 115
blue, 108
grey, 114
pink, 111
red, 112
violet, 109
white, 106

observation sequence, 15

phone, 8
phoneme, 8

quantization, 7

sampling rate, 7
Scilab, 75
senones, 25
sibilant, 60
side-chain, 83
Sox, 90
speech

fluent, 9
spontaneus, 9
voiced, 4
whispered, 4

theorem
Nyquist, 7

thread, 66
tied states, 25
tolerance, 8
training, 14
transform

bilinear, 79
Discrete Cosine, 6
Fourier, 8
Short Time Fourier, 5

transition matrix, 21
trigram, 28

