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ABSTRACT

Railway transportation is a mobility solution that must be both reliable and
safe. To this end, the technical field of predictive maintenance focuses on
applying data science to maximize the availability of rolling stock assets.
This leads to modeling their degradation and minimizing their downtime by
preventing service-affecting failures. To this end, Artificial Intelligence (AI)
and Machine Learning have proven to be effective techniques for extracting
latent patterns from the available data.

This dissertation puts the emphasis on Deep Learning, which is the state
of the art in neural network research as the leading paradigm in AI and Ma-
chine Learning. Additionally, the scope of the work is framed in the multi-
national industrial context of Alstom, operating worldwide in rail markets,
and active in the fields of passenger transportation, signaling and locomo-
tives. The thesis is intended to be an expert reference work at Alstom in the
area of predictive maintenance for rolling stock, especially through the use
of neural networks for developing advanced maintenance solutions that are
reliable and cost-effective. To this end, different environments have been
considered, including mixed data types, i.e., continuous and discrete vari-
ables, and different predictive objectives such as diagnosis and prognosis.
As a result of this research, three journal articles have been published (in
addition to some conference papers).





RESUM

El transport ferroviari és una solució de mobilitat que ha de ser alhora fiable
i segura. Amb aquesta finalitat, el manteniment predictiu se centra en aplicar
la ciència de dades per a maximitzar la disponibilitat dels actius de material
rodant. Això porta a modelar la seva degradació per a minimitzar el temps
d’inactivitat mitjançant la prevenció de fallades que afecten el servei. En
aquesta lı́nia de valor afegit, la Intel·ligència Artificial (IA) i l’Aprenentatge
Automàtic (AA) han demostrat ser tècniques efectives per a extreure patrons
latents de comportament a partir de les dades disponibles.

Aquesta tesi posa l’èmfasi en l’Aprenentatge Profund, que és l’estat de
l’art en la recerca de xarxes neuronals com a paradigma lı́der en IA i AA.
A més, l’abast del treball s’emmarca en el context industrial multinacional
d’Alstom, que opera en els principals mercats ferroviaris a nivell mundial,
amb presència en els camps del transport de passatgers, senyalització i loco-
motores. La tesi pretén ser un treball de referència a Alstom en l’àmbit del
manteniment predictiu del material rodant, especialment mitjançant l’ús de
xarxes neuronals profundes per al desenvolupament de solucions de man-
teniment avançades que siguin fiables i efectives. Per a tal finalitat, s’han
considerat diferents entorns amb tipus de dades mixtes, és a dir, amb vari-
ables contı́nues i discretes, i diferents objectius predictius com la diagnosi i
la prognosi. Com a resultat d’aquesta investigació, s’han publicat tres arti-
cles en revistes indexades (a més d’algunes ponències en congressos).





RESUMEN

El transporte ferroviario es una solución de movilidad que debe ser a la vez
fiable y segura. A tal fin, el mantenimiento predictivo se centra en aplicar la
ciencia de datos para maximizar la disponibilidad de los activos de material
rodante. Esto lleva a moldear su degradación para minimizar el tiempo de
inactividad mediante la prevención de fallos que afectan al servicio. En esta
lı́nea de valor añadido, la Inteligencia Artificial (IA) y el Aprendizaje Au-
tomático (AA) han demostrado ser técnicas efectivas para extraer patrones
latentes de comportamiento a partir de los datos disponibles.

Esta tesis pone el énfasis en el Aprendizaje Profundo, que es el estado
del arte en la investigación de redes neuronales como paradigma lı́der en IA
y AA. Además, el alcance del trabajo se enmarca en el contexto industrial
multinacional de Alstom, que opera en los principales mercados ferroviar-
ios a nivel mundial, con presencia en los campos del transporte de pasajeros,
señalización y locomotoras. La tesis pretende ser un trabajo de referencia
en Alstom en el ámbito del mantenimiento predictivo del material rodante,
especialmente mediante el uso de redes neuronales profundas para el desar-
rollo de soluciones de mantenimiento avanzadas que sean fiables y efecti-
vas. Para tal fin, se han considerado diferentes entornos con tipos de datos
mixtos, es decir, con variables continuas y discretas, y diferentes objetivos
predictivos como la diagnosis y la prognosis. Como resultado de esta inves-
tigación, se han publicado tres artı́culos en revistas indexadas (además de
algunas ponencias en congresos).
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Jordi Vitrià for chairing my PhD defense. Their feedback was invaluable to
improve my dissertation.

I am utterly grateful to my managers and directors at Alstom, who have
always supported my applied research endeavors, especially with respect
to this dissertation: Vicente Fuerte, Sergi Bermejo, Guillermo Sospedra,
Juan-Carlos Villalba, and Nenad Mijatovic. I would also like to thank my
colleague co-authors, for the effort they put in improving the papers that we
published.

I am also very grateful to the Government of Catalonia (Generalitat de
Catalunya) for the financial support for a part of my PhD research project.
This grant has enabled me to discover some of the greatest institutions and
minds in science and learn from their knowledge and experience. Many
thanks to all of the excellent professors and lecturers from La Salle in
Barcelona, from Polimi in Milano, from Harvard in Boston, and from North-
western in Chicago.

I would also like to have some kind words for my (then) comrades at La
Salle, with whom I had my first steps into research and teaching... 16 years



ago! Thanks for the good time we had together Dr. Lluı́s Formiga, Dr. Santi
Planet, and Prof. Xavier Sevillano.

Finally, last but not least, my family, Ingrid and Gemma, without whom
some of the greatest events in my life would not have occurred.



CONTENTS

Contents 13

List of Tables 17

List of Figures 19

I Framework 1

1 Introduction 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Contribution and Hypothesis . . . . . . . . . . . . . . . . . 6
1.3 Structure of the Dissertation . . . . . . . . . . . . . . . . . 8
1.4 Published Work . . . . . . . . . . . . . . . . . . . . . . . . 9

1.4.1 Enhancing Railway Pantograph Carbon Strip Prog-
nostics with Data Blending through a Time-Delay
Neural Network Ensemble (2020) . . . . . . . . . . 9

1.4.2 Pushing Distributed Vibration Analysis to the Edge
with a Low-Resolution Companding Autoencoder:
Industrial IoT for PHM (2020) . . . . . . . . . . . . 10

1.4.3 Integrated Multiple-Defect Detection and Evalua-
tion of Rail Wheel Tread Images using Convolu-
tional Neural Networks (2021) . . . . . . . . . . . . 10



Contents Contents

1.4.4 Towards Learning Causal Representations of Tech-
nical Word Embeddings for Smart Troubleshooting
(2022) . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.5 Unsupervised Probabilistic Anomaly Detection
over Nominal Subsystem Events on a Hierarchical
Variational Autoencoder (2023) . . . . . . . . . . . 11

1.5 Acknowledgement . . . . . . . . . . . . . . . . . . . . . . 12

2 Railway-focused PHM 13
2.1 Main Topics in the Railway Research Community . . . . . . 14

2.1.1 Reliability . . . . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Management . . . . . . . . . . . . . . . . . . . . . 16
2.1.3 Automation . . . . . . . . . . . . . . . . . . . . . . 18
2.1.4 Big Data . . . . . . . . . . . . . . . . . . . . . . . 18
2.1.5 Cybersecurity . . . . . . . . . . . . . . . . . . . . . 19
2.1.6 Sustainability . . . . . . . . . . . . . . . . . . . . . 20
2.1.7 Wheel-Rail Interface . . . . . . . . . . . . . . . . . 21
2.1.8 Brake . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.9 Bearings . . . . . . . . . . . . . . . . . . . . . . . 24
2.1.10 Pantograph–Catenary Interface . . . . . . . . . . . . 26

2.2 Technologies Applied to Product Development . . . . . . . 27
2.2.1 Smart Sensors . . . . . . . . . . . . . . . . . . . . 28
2.2.2 Machine Vision Inspection . . . . . . . . . . . . . . 29
2.2.3 Technical Language Processing . . . . . . . . . . . 30
2.2.4 System Log Analytics . . . . . . . . . . . . . . . . 31

3 Deep Learning-based PHM 33
3.1 Main Topics in the Deep Learning Research Community . . 34

3.1.1 Breakthroughs in Neural Networks . . . . . . . . . 34
3.1.2 Deep System Health Management . . . . . . . . . . 43
3.1.3 Challenges and Opportunities . . . . . . . . . . . . 44

3.2 Learning Techniques for Product Research . . . . . . . . . . 45

4 State Of The Art 47
4.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.1 Railway Engineering . . . . . . . . . . . . . . . . . 48
4.1.2 Data Science . . . . . . . . . . . . . . . . . . . . . 49

4.2 Railway Data Operations . . . . . . . . . . . . . . . . . . . 50
4.3 Applied Research Questions . . . . . . . . . . . . . . . . . 51



Contents Contents

II Contributions 55

5 Research Publications 57
5.1 Conference Paper 1 (2020) . . . . . . . . . . . . . . . . . . 59
5.2 Conference Paper 2 (2020) . . . . . . . . . . . . . . . . . . 71
5.3 Journal Article 1 (2021) . . . . . . . . . . . . . . . . . . . . 83
5.4 Journal Article 2 (2022) . . . . . . . . . . . . . . . . . . . . 105
5.5 Journal Article 3 (2023) . . . . . . . . . . . . . . . . . . . . 125

6 Discussion and Conclusions 143
6.1 Interpretability and Explainability . . . . . . . . . . . . . . 144
6.2 Decision Making . . . . . . . . . . . . . . . . . . . . . . . 145
6.3 Industrialization . . . . . . . . . . . . . . . . . . . . . . . . 145
6.4 Causal Inference . . . . . . . . . . . . . . . . . . . . . . . 146
6.5 Updated Challenges and Opportunities . . . . . . . . . . . . 148

6.5.1 Railway Fleet Planning . . . . . . . . . . . . . . . . 150
6.5.2 Technical Language Processing in Retrospect . . . . 150

6.6 On a Final Note... . . . . . . . . . . . . . . . . . . . . . . . 151

Bibliography 153

Index 177



Contents Contents



LIST OF TABLES

4.1 Potential impacts of the AI technology in the railway main-
tenance industry and business in general. . . . . . . . . . . . 50

6.1 Aggregated challenges and opportunities along with the
Conference Papers (CP) and Journal Articles (JA) that ad-
dressed them, also showing the publication years in brackets. 149



List of Tables List of Tables



LIST OF FIGURES

3.1 Multilayer Perceptron network where O = g(I · WIH) ·
WHO. The non-linear function g is inherent in the hidden
layer. In this diagram, the bias terms “+1” are made explicit. 35

3.2 Autoencoder architecture, where D is the data dimensional-
ity and H is the size of the hidden layer, which defines the
representational capacity of the network. The compressive
encoding function of the model is ensured as long as H < D. 36

3.3 Convolutional layer for an input vector I = (i1, i2, ...), a 1D
second-order filter W = (w1, w2, w3), and an output vector
O = (o1, o2, ...), which clearly shows that O = I∗W . Edge
thickness indicates parameter reuse. . . . . . . . . . . . . . 38

4.1 Map of railway assets that appeal to business (in circles) and
their related predictive maintenance technologies (in squares). 51



List of Figures List of Figures



PART I

FRAMEWORK





CHAPTER 1

INTRODUCTION

We’re in the business of demonstrating a learning capability, showing that
something can learn to do something nontrivial and that it can learn it
whether it’s a problem that’s amenable to analytical treatment or not.

– Bernard Widrow (1994)

THE Fourth Industrial Revolution and digital technologies are major
drivers of innovation. These incentivize businesses to maximize pro- INNOVATION

ductivity, which in turn spur economic growth (Jahan, S. and Mahmud, A.
S., 2015). However, such growth can eventually lead to an exhaustion of the
available resources, which are already scarce by definition, and ultimately
increase social inequality, thus affecting the human talent that runs the com-
panies. As a consequence of this risk, increasingly more sustainable and
efficient alternatives lead the agenda of corporations and academia.

In light of these challenges, Artificial Intelligence (AI) is regarded as ARTIFICIAL INTELLIGENCE

a field in science and engineering that can help to optimize the capacity of
business, but it is imperative for leaders to separate AI reality from hype.
Progress in AI is taking place in a technological context marked by the
datafication of the world which affects all sectors of our society and econ-
omy. Nonetheless, if there is one strategic area that is particularly well
suited to integration into AI it is the transport and mobility sector, which TRANSPORT

is one of Europe’s longstanding strengths (Villani, C., 2018). In fact, if we
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focus our attention on the mass transit environments, there is a push by Eu-
rope’s major railways and manufacturers to adopt new technology through
the use of AI and the Industrial Internet of Things (Scordamaglia, D., 2019).
Thus, the digitalization is going to play an important role in helping railways
to carry more passengers and freight without having to invest huge sums of
money in the time-consuming process of laying additional tracks and ex-
panding stations (Briginshaw, D., 2020a).

As an implementation of this data-enhanced vision, this research fo-
cuses on the application of AI to the predictive maintenance of rollingPREDICTIVE MAINTENANCE

stock, which is meant to maximize the availability of these transport assets.
The impact of such digitalization will be a game-changer on all mainte-
nance activities in the railway transport sector (UITP, 2020). By employingRAILWAY

advanced software and engineering techniques, predictive technology can
substantially enhance railway safety by enabling a shift from time-based to
needs-based maintenance (Man, T., 2018). This should improve operational
availability and efficiency while reducing maintenance costs. Analyzing
data from trains in service provides insights into their degradation, which
helps maintainers make better informed decisions to take action on their
fleet given the limited resources at the depot. Moreover, the extracted in-
formation enables creating several new business cases. For example, valueBUSINESS CASE

is added when the whole life of the components is used. This does not oc-
cur when the traditional over-dimensioned scheduled maintenance process
is followed. In that case, there are many frequent operations that are proba-
bly unnecessary because the replacements are usually planned at a fraction
of their expected life driven by risk-averse criteria, regulation, and conser-
vative supplier policies. Additionally, value is also added when unexpected
issues occur and they are detected ahead of time (and fixed early) at the point
of incipient failure, so that the catastrophic expense of a potential service-
affecting failure is avoided. All these refined features also lead to an increase
of safety in the railway transport service (Seisenberger, M., ter Beek, M. H.,SAFETY

Fan, X., Ferrari, A., Haxthausen, A. E., James, P., Lawrence, A., Luttik, B.,
van de Pol, J., and Wimmer, S., 2022), which is likewise subject to business
profitability.

In technical terms, the goal of predictive maintenance is framed un-
der the scope of Prognostics and Health Management (PHM), which is the
proper scientific field that formally studies these topics. Broadly speaking,
PHM is a data-driven approach that provides insights into the actual health
condition of a degrading asset (i.e., the diagnosis) and predicts its futureDIAGNOSIS

evolution (i.e., the prognosis) as an estimation of the remaining useful life.PROGNOSIS

These concepts were originally introduced by Hippocrates (c. 460 – c. 370
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BC) in the context of medicine (Stefanakis, G., Nyktari, V., Papaioannou,
A., and Askitopoulou, H., 2020). At present, the bleeding edge of research
in PHM is fueled by the recent successes of Deep Learning (DL) on many
scenarios (Fink, O., Wang, Q., Svensén, M., Dersin, P., Lee, W.-J., and
Ducoffe, M., 2020). DL approaches are able to process raw data directly and
learn representations on many levels. This is especially appealing nowadays
in the maintenance environment because tackling the problems following
the conventional engineering approach, which is advised by a committee of
subject matter experts, is not feasible anymore (Smith, K., 2023). The fast-
paced increasing sophistication of the assets and their changing operational
regimes and environments, in addition to external factors such as the energy
crisis (Smith, K., 2022a), the war in Ukraine (Clinnick, R., 2022a), and the
Covid-19 pandemic (Burroughs, D., 2022d), put intense pressure on main-
tenance and engineering teams and threaten the delivery of rail projects.

The overall purpose of this research is to capitalize the enhanced data-
driven power provided by PHM through the DL technology, and use it to
add value to Alstom’s rolling stock maintenance business through the pur-
suit of sustainable and efficient solutions. To this end, additional challenges
need to be tackled, such as the discovery of anomalous behaviors in reg-
ular service data without a record of previous failures, while dealing with
different sources of data (e.g., rich parametric signals from sensors com-
pared to sparse nominal variables from subsystem events). This Chapter is
organized as follows: Section 1.1 describes the motivation of the research,
Section 1.2 details the contributions, Section 1.3 outlines the structure of the
dissertation, and Section 1.4 summarizes the published work.

1.1 Motivation

Richard Hamming, the renown American mathematician for his contribu-
tions is computer engineering and telecommunications, argued that if you
are to do important work then you must work on the right problem, at the
right time, and in the right way (Hamming, R. W., 1986). Valuable work is
not simply new/original work that no-one cares about, it must be relevant
and impactful, especially in a vibrant field like DL research (Wagstaff, K.
L., 2012).

The industrial research conducted in this dissertation is regarded to be
important for the following reasons:

Right problem The problems tackled here align with Alstom’s mainte-
nance business. The business case for PHM yields a positive return on
investment when the predictive technology is applied to components
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that rarely fail but which are very costly to repair, which is the case
for bogie components such as axle bearings, wheels, traction motor,
etc.

Right time Alstom has recently been through a process of deep transforma-
tion by merging with Bombardier Transportation to enhance its global
presence and become the leading innovator in the market (Poupart-
Lafarge, H., and Smith, K., 2021). This research aligns perfectly with
this vision.

Right way The fundamental role of a research scientist at Alstom is to
capitalize the state of the art in PHM and apply it to specific prod-
uct/business problems, rather than delving into the techniques and
competing against the best performing approach in the literature (pro-
vided that it is the same problem, data, and performance indicators).
The developed solutions must be good enough to adapt fast to the
pace of change and continuously add value to the customers in an
agile manner. The Right First Time management principle is a way-
of-working recommendation that has traditionally been observed at
Alstom to make sure these points are effectively regarded (Leuen-
berger, H., Puchkov, M., and Schneider, B., 2013).

Having Alstom as the committed industrial partner ensures that the re-ALSTOM

search is to the point, fit for purpose, and of interest to a large community
of railway engineers. Note that a rolling-stock manufacturing company like
Alstom does not take for granted that data science adds value to its core busi-
ness. That is why it is important to focus on the application of the research,
which in this case its main contribution is in the use of DL for tackling the
variety of data through the developed solutions on 5 existing data products.

1.2 Contribution and Hypothesis

In the railway sector, neural network techniques have been used to develop
condition monitoring solutions since the mid nineties (Fararooy, S., and Al-
lan, J., 1995). The neural technology that was available at the time is now
regarded as the 2nd generation of networks, also known as Multilayer Per-
ceptrons. They are able to learn and approximate any continuous non-linear
function using gradient descent optimization strategies, but their capacity
becomes quickly limited as more representational power is pursued. Nowa-
days, a 3rd generation of networks known as Deep Learning has superseded
the Multilayer Perceptrons, and more intricate objective functions can now
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be learnt through the depth of the models and the parallelization of their
computations.

This dissertation is intended to be an expert reference work at Alstom
in the field of predictive maintenance for passenger rolling stock, especially
through the use of Deep Learning as the state of the art technology in the
study of neural networks. The following list describes the goals that are
expected to be attained through the different solutions developed in this re-
search:

Cost-effectiveness Prove that DL is the most suitable approach to tackle
PHM problems at Alstom, i.e., a solution that is good enough, devel-
oped in a short time, and thus able to increase the productivity.

Proven technology Prove that the DL technology of use stands the test of
time, i.e., the applied research shows more than 5 years of sustained
progress, showing a stable trend.

Industrialisability Prove that the lead time between a research prototype
and an industrial-proof solution on any platform is minimized with
DL.

Flexibility Prove that the DL technique can be applied to the whole value
chain of PHM for solving different problems in terms of components
and variables, and also to improve the performance of the related
products.

Robustness Prove that DL succeeds in solving real-world railway prob-
lems, characterized by a shortage of critical failure data, which is very
different from standard research datasets.

Being aware that there are multiple ways/approaches to accomplish a
given goal, and that a company like Alstom is strongly rooted in traditional
engineering ways of working, which sometimes raise qualms about recent
research progress, this dissertation should build a convincing case for ap-
plying DL to the many PHM challenges in the maintenance of railways.
This mindset often leads to preferring the development of a single solution
as a specific proof of concept rather than pursuing vast comparisons with
other previous work, which may also be unfair due to lacking implementa-
tion details. Such inherent limited reproducibility may also lead to cherry-
pick results in order to make a questionable point, intentionally or inadver-
tently (Komiyama, J., and Maehara, T., 2018). Moreover, the huge expres-
siveness of DL yields models that can be trained to learn virtually anything,
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including totally meaningless associations with shuffled labels (Zhang, C.,
Bengio, S., Hardt, M., Recht, B., and Vinyals, O., 2017), which could lead
to wrong conclusions. Additionally, the bitter lesson that the general meth-
ods that leverage computation are ultimately the most effective ones (instead
of other factors such as the refinement of the algorithms) leads to conclude
that the approaches that are blindly focused on performance comparisons
are likely to be rapidly superseded by more powerful computers (Sutton, R.
S., 2019). Finally, the fitness for industrialization often filters the range of
approaches that may even be worth comparing, in addition to the benefit
of productionizing well time-tested interpretable techniques, which is obvi-
ously unattainable when the bleeding edge of the state of the art is targeted.

Taking into account all these considerations, the research hypothesis thatHYPOTHESIS

is here tackled can be expressed as follows:

Deep Learning displays the characteristics that make it a suitable
technology for developing dependable industrial-grade solutions for

effectively maintaining rolling stock with confidence

This dissertation deals with the most recent research in this line of work
at Alstom, which covers the past 3 years, i.e., from 2020 until now. How-
ever, this effort could be framed in a broader scope that stretches back to the
last 10 years (Trilla, A., and Gratacòs, P., 2013, 2016; Trilla, A., Gratacòs,
P., Guinart, D., Alessi, A. and Lamoureux, B., 2016; Trilla, A., and Cabré,
X., 2018; Trilla, A., Dersin, P., and Cabré, X., 2018; Trilla, A., Janjua, F.,
and Bermejo, S., 2019).

1.3 Structure of the Dissertation

This dissertation is divided into two main parts. Part I introduces the frame-
work in Alstom’s industrial context and develops the state of the art, and
Part II provides the published scientific contributions, discusses their im-
pact, and draws the conclusions.

In more details, Part I is organized as follows: Chapter 1 provides the
motivation for this research, the corporate business context where it is de-
veloped, and its hypothesis. Chapter 2 develops the state of the art from the
viewpoint of the railway engineer, including general topics such as reliabil-
ity and management, among others, and also focuses on their application to
product development. Chapter 3, instead, adopts the perspective of the data
scientist, and focuses on the technical topics around Deep Learning and the
application of specific approaches to PHM.
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Similarly, Part II is organized as follows: Chapter 5 provides a summary
of the five published peer-reviewed scientific contributions in the recent re-
search period, which comprises two conference papers and three journal
articles. Finally, Chapter 6 concludes the work, discusses the limitations of
the research, asks challenging questions about the interpretability of the re-
sults, their value in helping make decisions, and describes interesting lines
of future improvement, mostly observing the inference of causality.

1.4 Published Work

This dissertation presents a Ph.D. Thesis as a compendium of publications
where the candidate has had a leading role in all of them, comprising their
conceptualization, experimentation, writing, review and editing. All the
studies and investigations comprised in this research started as specific prob-
lem to be solved in a project, and the candidate developed bespoke solutions
based on Deep Learning that align with the state of the art, resulting in pub-
lications that met the quality standards of scientific media. Therefore, his
contributions constitute a solid base on which to build products that enhance
the predictive maintenance of rolling stock. This Chapter summarizes the
two conference papers (2020) and the three journal articles (2021–2023)
that have been published in this doctoral period.

1.4.1 Enhancing Railway Pantograph Carbon Strip Prognos-
tics with Data Blending through a Time-Delay Neural Net-
work Ensemble (2020)

This contribution develops a straightforward solution to industrialize the
prognostics of pantograph degradation based on the thickness of the carbon
strips. The predictive method is based on a robust online non-linear multi-
variate regression approach, and considers factors that may have an impact
on the degradation on the carbon strip, such as the seasonal condition of the
overhead contact wire. Its implementation is based on a neural ensemble us-
ing a Multilayer Perceptron. The learning approach aims to integrate all the
sources of potential utility along with the carbon strip data, which is aver-
aged in time with a set of spreading filters to increase the overall robustness
to uneven sampling. Finally, the uncertainty of this technique is determined
with a sliding window approach, and the resulting accuracy is ensured to be
within the specifications for adding value to the maintenance of the rolling
stock, i.e., a small confidence interval for a given horizon than enables the
team to schedule the resources at the depot ahead of time.



10 1. INTRODUCTION

1.4.2 Pushing Distributed Vibration Analysis to the Edge with
a Low-Resolution Companding Autoencoder: Industrial
IoT for PHM (2020)

This contribution explores a vibration data compression strategy for diag-
nosis purposes. This work is motivated by the low-bandwidth transmis-
sion capacity of the radio interfaces that wireless sensor networks typically
equip, and the low-power features of their battery-operated (and/or energy-
harvested) electronics. The proposed approach first compresses the raw
signal waveform using an optimally regularized Autoencoder with an un-
dercomplete representation, and then it reduces the resolution of the com-
pressed data by quantizing all the resulting real values into single-byte un-
signed integers. The evaluation of this strategy on a dataset of railway axle
bearings has concluded that with compression rates up to 10 the vibration
signals are practically unaffected by this procedure, and once the signals are
reconstructed, many diagnosis goals like anomaly detection, fault location,
and severity appraisal can be performed. Moreover, the obfuscated embed-
ding of the compression may be seen as a means to encrypt the data for
cybersecurity purposes, especially if more depth is considered in the Au-
toencoder.

1.4.3 Integrated Multiple-Defect Detection and Evaluation of
Rail Wheel Tread Images using Convolutional Neural Net-
works (2021)

This contribution presents an automatic Deep Learning method to jointly
detect and diagnose wheel tread defects based on smartphone pictures taken
by the maintenance team on the shop floor. This approach is based on a
framework of Convolutional Neural Networks, which is applied to the dif-
ferent tasks of the diagnosis process including the location of the defect area
within the image, the prediction of the defect size, and the identification of
the defect type. With this information determined, the maintenance-criteria
rules can ultimately be applied to obtain the actionable results. This work
concludes that the presented method can reliably automate the condition di-
agnosis of half of the current workload and thus reduce the lead time to take
maintenance action, significantly reducing engineering hours for verifica-
tion and validation.
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1.4.4 Towards Learning Causal Representations of Technical
Word Embeddings for Smart Troubleshooting (2022)

This contribution explores how the Causal Inference paradigm may be ap-
plied to troubleshoot the root causes of failures through language process-
ing and Deep Learning. Following the leading state-of-the-art strategy to
represent latent features from text (Feder, A., Keith, K. A., et al., 2022),
a novel approach to extract linguistic knowledge has been devised through
the joint embedding of two contextualized Bag-Of-Words models, which
defines both a probabilistic framework and a distributed representation of
the underlying causal semantics. This method has been applied to the main-
tenance of rolling stock bogies using Return On Experience data, and the
results indicate that the inference of causality has been partially attained
with the currently available technical documentation (consensus with fail-
ure analysis over 70%). Additionally, the proposed approach may be used
as a strategy to detect lexical imprecision, make writing recommendations
in the form of standard reporting guidelines, and ultimately help produce
clearer diagnosis materials. As a result, the safety of the railway service
may be increased by flagging ambiguous expressions and words that could
cause communication errors (Nakamura, R., 2019).

1.4.5 Unsupervised Probabilistic Anomaly Detection over Nom-
inal Subsystem Events on a Hierarchical Variational Au-
toencoder (2023)

This contribution develops a versatile approach to discover anomalies in
massive operational data for nominal (i.e., non-parametric) subsystem event
signals using unsupervised Deep Learning techniques. Firstly, the proposed
method builds a neural convolutional framework to extract both intrasubsys-
tem and intersubsystem patterns. Secondly, it generalizes the learned em-
bedded regularity of a Variational Autoencoder manifold by merging latent
space-overlapping deviations with non-overlapping synthetic irregularities.
Finally, it creates a smooth diagnosis probabilistic function on the ensuing
low-dimensional distributed representation using a Multilayer Perceptron.
This strategy has been validated with eight pairwise-interrelated subsystems
from high-speed trains. Its outcome also leads to further reliable explain-
ability from a causal perspective. Additionally, its results yield interesting
opportunities for designing Intrusion Detection Systems in the context of
cybersecurity.
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CHAPTER 2

RAILWAY-FOCUSED PHM

Perhaps coming up with a theory of information and its processing is a bit
like building a transcontinental railway. You can start in the east, trying to

understand how agents can process anything, and head west. Or you can
start in the west, with trying to understand what information is, and then

head east. One hopes that these tracks will meet.
– John Barwise (1986)

THE purpose of maintenance is to keep assets performing their pre-
scribed functions at the optimum cost (UITP, 2020). Due to compet-

itive pressure and overcapacity in production facilities, some rolling stock
manufacturers seek growth in new business models, e.g., offering train-as- BUSINESS MODEL

a-service models (McKinsey, 2017). To attain this goal, sensor technology
and data analytics have to change the maintenance paradigm: from time and
usage-based maintenance to condition-based and predictive maintenance.
The adoption of this paradigm has the following benefits (UITP, 2020):

• Faster identification and timely qualification of asset deterioration

• Increased asset availability and optimized maintainability for the op-
erators

• Improved asset reliability and safety, leading to more trust from pas-
sengers and better reputation for the operator
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• Lower system life cycle costs

The costs of the condition-based models are mainly influenced by the
frequency of inspections. But if there aren’t any inspections performed, theINSPECTION

costs are going to be higher due to the rising number of failures (Eisen-
berger, D., and Fink, O., 2017). Going from corrective, to planned, to
condition-based, and to predictive maintenance, reliability increases and
cost decreases. Similarly, going from reactive, to manual, to automated,
and to data-driven procedures, the required effort increases as well as po-
tential benefit (Thompson, I., 2022). However, research and discussion with
asset designers, manufacturers, owners, operators and maintainers showed
that railway-focused condition-based maintenance (CBM), as a general co-
hesive concept, is still in its infancy (UITP, 2020).

Railway researchers are urged to make an impact. For any technolog-IMPACT

ical transition to be successful, it is essential that everyone is heading in
the right direction (Smith, K., 2022c). Data on recent patent applications
made around the world provides insights into the rail innovative technology
leaders (Clark, M., 2022), and in this regard, the number of Chinese appli-
cants has risen significantly in recent years and is likely to continue to do
so. Additionally, the Shift2Rail program aims to deliver, through railway
research and innovation, the capabilities to bring about the most sustain-
able, cost-efficient, high-performing, time-driven, digital and competitive
customer-centered transport mode for Europe (Shift2Rail, 2020).

Research shows that maintenance performance is linked to many het-
erogeneous parameters, and that most of them are not yet taken into account
in the current maintenance processes (Unife, 2017). This chapter describes
some important aspects from the viewpoint of the railway engineer. First,
Section 2.1 focuses on the hot topics around railway maintenance, along
with the different techniques to tackle these challenges, including model-
based, data-driven, and hybrid approaches (Atamuradov, V., Medjaher, K.,
Dersin, P., Lamoureux, B., and Zerhouni, N., 2017). Then, Section 2.2 pro-
vides the outlines of the technologies that are used to develop solutions that
address the former questions in different environments.

2.1 Main Topics in the Railway Research Commu-
nity

While it is difficult to determine exactly how fast and how far AI will go in
terms of disrupting the business value chain, there is a consensus that theVALUE CHAIN

ability to automate processes, analyze data beyond human comprehension,



2.1. Main Topics in the Railway Research Community 15

and personalize customer services will have profound and far-reaching im-
pacts on how companies operate (Barrow, K., 2018b). What follows is a
list of potential impacts of the AI technology in the railway maintenance
industry (Burroughs, D., 2019c) and business in general (Glover, J., 2013):

• Increased capacity: railway companies are paid to provide movement,
and load factors are all-important, i.e., the trains must be full and they
must be used for a large proportion of each day and every day. Line
capacity is a scarce resource, and spare capacity is a drain on company
resources.

• Reduced life cycle costs: short turnarounds are key to utilization.

• Reduced errors from both humans and existing computer systems.
Good performance is vital: performance of passenger trains is mea-
sured by punctuality and reliability, and the railway must be seen as
safe.

• Improved efficiency and increased performance: faster journey times
allow better use of staff and stock.

• High-level automation and autoadaptive systems: rail traffics are in-
terdependent, i.e., the railway does not exist in a vacuum.

• Simplified supervision and fast problem resolution, which is driven
by reduced complexity with interoperable interfaces.

• Improved flexibility, taking into account that change takes time, but
that it is inevitable because continuous improvement updates are nec-
essary.

Remote diagnosis and CBM are considered a major change in train
maintenance. They present a significant opportunity to reduce maintenance
costs, while also having a positive impact on reliability, availability and ser-
vice quality (Verdun, C., Audier, P., and Turgis, F., 2020). CBM can reduce
rolling stock manual diagnostics by at least 60% and could lead to an overall
reduction of at least 10-15% in maintenance costs: equivalent to an annual REDUCTION

saving of up to 4bn euro for train operators, 2bn euro for rolling stock man-
ufacturers, and 4bn euro for third parties (McKinsey, 2017). Thus, CBM is
a key business driver for digitalization in the rail sector (Barrow, K., 2018a).
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2.1.1 Reliability

Reliability is the key to customer satisfaction in public transport, and per-
ceptions of reliability increase when passengers have early warning of un-
expected delays thanks to the provision of real-time disruption informa-
tion (Blome, C., Kargoll, B., and Wernz, J., 2022). Evidently, safety must
always be a priority, coming before all others. But other modes of transport
appear to be able to balance the need for safety while also implementing
new technologies at a rate faster than rail (Burroughs, D., 2022b).

The benefits of higher reliability and lower costs can only be realizedRELIABILITY

when the organizational culture adapts to make best use of the technol-
ogy (Kilian, K., Kilian, M., Mazur, V., and Phelan, J., 2016). Reliability
Centered Maintenance (RCM) and Life Cycle Cost allow factoring a cost-
benefit analysis into the technical considerations to yield the optimal finalCOST-BENEFIT

maintenance decision (Mascherona, R., Bellani, L., Compare, M., Trucco,
R., Zio, E., 2020). However, the maintenance concept has become so mis-
takenly entwined with reliability that the two terms are often used as syn-
onyms. On the one hand, reliability focuses on failure patterns: bathtub,
wear out, fatigue, initial break-in period, infant mortality, etc. (O’Hanlon,
T., 2019). On the other hand, maintenance focuses on the return on as-
sets: chronic failure analysis, RCM analysis, root-cause analysis, defect
elimination, integrated cost-schedule management, work-order feedback,
etc. (Reeve, J., 2019).

Anyhow, failures are an undeniable part of maintenance. Failures hap-FAILURE

pen irrespective of the strategies implemented for their prevention, whether
based on reliability or maintenance. However, with a better planning ap-
proach, these failures should be used to improve the state of the system. By
employing the Pareto principle, which states that 80 percent of the issues
comes from 20 percent of the causes, any organization can focus its atten-
tion on genuine and demanding issues related to maintenance and reliability,
rather than overreacting on each failure (Khan, S., and Yairi, T., 2018).

2.1.2 Management

Asset Management

Many large rail projects are doomed to failure and, if they are realized, they
are likely to be completed with unexpectedly high costs and rarely without
defects (van der Bijl, R., Utsunomiya, K., and van Oort, N., 2020). There-
fore, predictive maintenance remains the holy grail for effective railway
management (Smith, K., 2022b). The emerging digital technologies and AI
are expected to augment the decision making in asset and fleet management.
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However, the AI technologies need to be adapted to the specific needs of any
industrial domain, and facilitate the implementation and achievement of the
overall business goals (Kumari, J., Karim, R., Thaduri, A., and Castano, M.,
2022).

Traditional solutions rely on constant signaling thresholds defined us- THRESHOLD

ing technical knowledge and physical models to assess the health state of
a system. As the health of a system differs from one train to another and
independently evolves in time, these thresholds do not always take into
account maintenance load, maintenance infrastructure availability and the
effect of aging during the lifetime of the system. To overcome this limi- AGING

tation, a hybrid system mixing system experts and machine learning tools
is advised (Turgis, F., Audier, P., Nemoz, V., and Marion, R., 2022). For
example, statistical fleet analysis could be combined with clustering algo-
rithms to characterize the health state of a system and identify potential
failure modes. This approach could help to predict how aging effect and
operational constraints impact the wear of a system. WEAR

Here, the opportunity is to automate decision-making and decision im- DECISION-MAKING

plementation with the support from subject matter experts (Apps, J., 2019).
In this sense, an AI-based system could support inexperienced staff to make
better and more informed decisions. It may also help reduce the stress by
allowing staff members to concentrate on other priority tasks (Clinnick,
R., 2022b). Eventually, maintenance development and fleet maintenance
management will potentially merge into a single maintenance analytics and
scheduling function (McKinsey, 2017). Creating and updating decision
rules and implementing them in the maintenance processes will be at the RULES

heart of the new maintenance system.

Talent Management

The rail sector overall, including maintenance and operations, is respon-
sible for more than 1 million direct and 1.2 million indirect jobs in the JOBS

EU (Shift2Rail, 2020). Understanding exactly when a maintenance inter-
vention is required can optimize the allocation of human resources, reduc- HUMAN RESOURCES

ing the overall need for the most skilled technicians who are increasingly
hard to come by (Smith, K., 2022b).

People are key to making PHM a success (Burroughs, D., 2019a). How-
ever, as the nature of work changes and the useful life-span of skills drops,
training departments are facing the challenge of producing more new staff
with digital skills as well as more practical skills to meet the needs of
railways (Burroughs, D., 2019d). In the future there are likely to be four
categories of tasks comprising those operated by only humans, humans
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and machines (both separated as well as integrated into AI), and only ma-
chines/AI (Burroughs, D., 2019d). Therefore, one of the biggest challenges
is to provide change management support and training for people (Verdun,TRAINING

C., Audier, P., and Turgis, F., 2020).

2.1.3 Automation

Automatic Train Operation, the technology behind driverless and unat-
tended trains, can change the way the stock is maintained. Succinctly,
the vehicle receives the distances it is allowed to drive and its permissi-
ble speeds via radio signals and makes sure these are complied (Clinnick,
R., 2021a). Autonomous driving along the route and within the depot re-AUTONOMOUS DRIVING

lieves the drivers and increases the safety of the passengers and other road
users (Clinnick, R., 2021c). Moreover, real-time passenger flow predictionPASSENGER FLOW

and crowd management could also be used to improve dwell time perfor-DWELL TIME

mance at key nodes in the network (Le Glatin, N., and Clarke, P., 2021). All
these additional data may be used to infer the expected degradation and thus
improve the management of the maintenance operations. As an example of
this change of paradigm, the phased construction of Barcelona’s first fully-
automated metro line (i.e., L9, using the Serie 9000 fleet, constructed by
Alstom) has been accompanied by a complete rethink in the way the entire
network is operated and maintained, and this has produced several business
benefits (Briginshaw, D., 2017).

2.1.4 Big Data

Data alone is only cost. The real benefit comes when you can turn it into in-
sights (Barrow, K., 2018a). Thus, applications and AI could be the answer toINSIGHTS

creating a better public transport within cities and reducing the dependence
on cars. Mobility must be considered a technical as well as a social issue andMOBILITY

focus on people’s requirements. However, integrating more services, more
data sources and more platforms makes the whole management of a mobility
system increasingly complex (Clinnick, R., 2022b). Mobility-As-A-Service
should promote: the use of a single app to provide access to mobility and
custom payment, the facilitation of a diverse menu of transport options, a
competitive alternative to the private use of cars, and digitalization as an aid
to the effectiveness of the transport system (Barrow, K., 2019a). Affordabil-
ity, ease of access, and straightforward journey planning are key to changing
travel patterns, and these are bound to change the approach to maintain theTRAVEL PATTERN

stock and ensure that it is available to meet its dynamic demand.
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Finally, the way data is collected must be carefully considered. Monitor-
ing assets in testing mode can provide results that are not accurate, since the
information are coming from assets that are not in their operating conditions. OPERATING CONDITION

Instead, monitoring the assets from a train that is in regular service can help
addressing this issue (Derosa, S., Frøseth, G. T., Lau, A., and Rönnquist,
A., 2022). When it comes to managing large amounts of data, there are two
kinds of approaches: those that start out building a scalable infrastructure,
and those that are in business (Helland, P., 2020).

2.1.5 Cybersecurity

With the adoption of information and communications technologies in rail-
way maintenance, vulnerability to cyber threats has increased. It is essential
that organizations move toward security analytics and automation to im- SECURITY

prove and prevent security breaches and to quickly identify and respond to
security events (Kour, R., Aljumaili, M., Karim, R., and Tretten, P., 2019).
In this sense, the rail sector shows low levels of maturity compared with
other sectors such as aviation (Burroughs, D., 2023). The current concern
is the existing installed base, because that’s what is transporting passen-
gers at present. The characteristics of railway networks that make them a
potential target include a distributed architecture, long life-cycles for equip-
ment, high safety integrity levels (redundancy), diversity of supply chain,
and small-medium volume production (Barrow, K., 2018c).

Increasing digitalization opens the railway up to a broad range of cy-
bersecurity threats, both known and unknown. The risks of not taking data
protection seriously include loss of intellectual property, the theft of sensi- PROTECTION

tive data, and damage to high value systems and infrastructure (Burroughs,
D., 2020). The most likely threats against them are Denial-of-Service (DoS) DENIAL-OF-SERVICE

attacks, which are designed to shut down a machine or network, making it
inaccessible to its intended users. This is usually achieved by flooding the
target with traffic, or sending it information that triggers a crash.

Cyberattacks are also increasing in railways with an impact on railway
stakeholders, e.g., threat to the safety of employees, passengers, or the pub-
lic in general; loss of sensitive railway information; reputational damage;
monetary loss; erroneous decisions; loss of dependability, etc. (Kour, R.,
Karim, R., and Thaduri, A., 2020). Missing awareness is one of the biggest
issues in the railway domain (Burroughs, D., 2019b).

While standard engineering approaches are effective in building new
rail control system components, a broader and more creative consideration
of attacks has benefits. In particular, the ability to cause mass disruption by
targeting the fail-safes designed to ensure safety or auxiliary systems that are
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not directly classified within the scope of the industrial control systems (Un-
win, D., and Sanzogni, L., 2022), which are the many unseen but important
cogs in the world that control the critical railway infrastructure (Villareal,
J. F., 2019). On this point, the real problem with cybersecurity comes from
telecommunications (Briginshaw, D., 2019), and there the most common
cyberattack in the transportation and rail sector comes from malware (Kour,MALWARE

R., Aljumaili, M., Karim, R., and Tretten, P., 2019). In this sense, signal-
ing systems are on the spotlight (Briginshaw, D., 2020b), especially when
the goal is to standardize them for interoperability purposes between coun-
tries(Briginshaw, D., 2022b; Rodenbeck, A., and Clinnick, R., 2022).

Alstom’s stake in rail cybersecurity company Cylus is an indication that
rail has moved into the software age. Cyberattacks have increased by 173%
since 2016 to the point where there is now, on average, a cyberattack against
critical rail systems every 30 days. Cybersecurity will become the number
one priority for top management alongside strategy (Briginshaw, D., 2022a),
which includes: 1) security by design, separating security and safety func-
tions; 2) reduced attack surface, with minimum physical and functional in-
terfaces; and 3) defense through depth, building multilayered mechanisms
for security and detection (Burroughs, D., 2021b).

Finally, security issues have posed serious challenges for the widespread
application of AI. Cryptography is the core technology to solve securityCRYPTOGRAPHY

problems, and how to adapt it to AI is a key issue. The state-of-the-art
mainly focuses on secure multiparty computation, homomorphic encryp-
tion, secure outsourcing computation, and federated learning. In addition,
verifiable technology has also become important to ensure the correctness
and integrity of AI systems. However, some solutions are high consuming
in computation or communication, which greatly impacts the usability and
practicability. Thus, exploring lightweight cryptographic techniques for AI
is a challenging research direction (He, D., 2023), and using AI to detect
intrusions is a topic that is becoming more and more relevant in the rail
industry as the IoT becomes more ingrained in systems and processes (Bur-
roughs, D., 2019c).

2.1.6 Sustainability

In railways, 9-12% of total vehicle operating costs are spent on bogie main-
tenance and life-cycles can be extended significantly (i.e., overhaul inter-OVERHAUL

vals by 25-75%) with the aid of remote condition monitoring (Barrow, K.,
2018a). Therefore, using the whole life of a component and maintaining the
stock only when needed (in contrast to a time-based schedule) contributes
to a more sustainable maintenance service.SUSTAINABLE
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The EU estimates that pollution, CO2 emissions, noise and congestion
costs the EU 1bn euro annually (Briginshaw, D., 2021), and rail traction pro-
duces about 2.9m tonnes of CO2 (Cooney, N., 2020). In this line of sustain-
ability, there appears to be three clear choices for decarbonizing the railway: DECARBONIZING

electrification, batteries and hydrogen (Clinnick, R., 2021b). However, poli-
cymakers don’t see rail as a solution to the climate crisis and discussions are
focusing too much on new technological solutions like electric cars (Smith,
K., 2021). Rail is the most energy-efficient and environmentally-friendly
form of powered transport. This is why European strategies for CO2 re- CO2

duction see a lot of potential in supporting further railway development, but
strong leadership is needed (Briginshaw, D., 2020a)

Rail systems make a compelling case for being at the core of any “net-
zero” future transport system: full electrification (with a fixed infrastruc- ELECTRIFICATION

ture), huge capacity potential and low energy-loss running dynamics (Ward,
C., Goodall, R., Harrison, T., and Midgley, W., 2022). Rail is making strides
to become more sustainable in its operations, but work remains to reduce
the carbon footprint of constructing new lines and stations (Burroughs, D.,
2022c).

Alternatively, rail vehicle light-weighting using fiber reinforced poly-
mer composite materials is essential for the future of rail. This is recog-
nized as a means of reducing carbon dioxide production through lower en-
ergy consumption, as well as reducing the impact on track degradation, thus
delivering improved rail capacity and performance (Bruni, S., Mistry, P. J.,
Johnson, M. S., et al., 2022).

Finally, battery traction is beginning to come into its own as a viable BATTERY

alternative to electrification and diesel (Burroughs, D., 2022a). Batteries
are believed to be the best alternative way of powering rolling stock (Barr,
A., and Smith, K., 2022). Also, they can solve AC-DC transfer issues by
avoiding expensive infrastructure changes and simplifying the track lay-
out (Hameed, R., 2021). Nevertheless, electric multiple units only do 50-
80km on battery. Thus, hydrogen is the only technological solution at HYDROGEN

present that will get anywhere near providing autonomous traction. In this
sense, Alstom led the charge to introduce hydrogen in Europe in 2016 (Clin-
nick, R., 2021b).

2.1.7 Wheel-Rail Interface

By collecting operational data on conditions such as temperature, wear and
energy consumption, insights into the asset’s performance and health can be
generated (Burroughs, D., 2021b). In this sense, management of the wheel-
rail interface is critical to maximizing the life of wheels and rails through WHEEL-RAIL
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preventative maintenance regimes that ensure all activities (e.g., wheel turn-
ing) offer value for money and safe operation (i.e., maintain conicity) (Vick-
erstaff, A., Bevan, A., and Boyacioglu, P., 2020).

Obviously, friction is the underlying root cause of wheel-rail degrada-FRICTION

tion. The level of friction is a function of total rolling distance, effective
sliding length, and sum velocity. The most dominant factor depends on the
friction modifier and the working mechanism for friction stabilization. It is
shown that the wear rates do not depend significantly on slip, which makes
it possible to predict wear behavior. Wear rates are dependent fundamen-WEAR RATE

tally on the type of friction modifier used (Oomen, M. A., Bosman, R., and
Lugt, P. M., 2017). Friction modifiers can effectively reduce the wheel-rail
adhesion level and change the negative friction characteristic to positive.ADHESION

The stick-slip oscillation, which occurs in the dry clean wheel-rail contact
condition, can be effectively eliminated with the application of the friction
modifiers (Zhang, P., Yang, Z., Moraal, J., Dollevoet, R., Zoeteman, A., and
Li, Z., 2022).

There are several sensing technologies such as vibration and opticalVIBRATION
OPTICAL measurements that can be used to monitor the degree of degradation of the

wheel-rail interface. They are described as follows:

Vibration Analysis High-frequency noise (i.e., above 10kHz) is generated
mainly by the outside leading wheel of each bogie (Kawaguchi, T.,
Sueki, T., Kitagawa, T., Nishimura, M., and Abe, H., 2019). Embed-
ded sensors installed in the wheelset provide an efficient opportunity
to detect early defects in the rolling surface such as wheel flats or
localized Rolling Contact Fatigue (RCF) damage. To this purpose,
the Root Mean Square and the Crest Factor of the vibration signa-
ture captured at different running speeds are computed (Jarillo, J. M.,
Moreno, J., Alfi, S., et al., 2021).

Optical Measurement Predictive wheelset maintenance using an optical
measurement system with the integrated Calipri principle (i.e., a laser
light section technology) for wheelset and rail maintenance allows
non-contact measurement, removing all external variables such a en-
vironment conditions. The system, which reduces measurement time
dramatically, provides various parameters such as the wheel profile,
diameter, back-to-back distance and brake disc thickness (Burroughs,
D., 2021b).

Wheel Condition Monitor Strain gauge-based system that provides infor-
mation on wheel tread and loading conditions to help improve wheel
life, bogie maintenance and safety. The range of detectable problems
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include: wheel flats, spalls, shellings, out-of-roundness, high wheel
impact loads, vehicle-axle overloading, poor vehicle/bogie loading
(imbalance), and wheel unloading (Man, T., 2018).

Wheel Impact Load Detector Provides a system to detect wheel damage
by measuring the peak vertical track forces and maximum dynamic
ratio. This approach has proven useful in predicting the level of dam-
age from high mean dynamic ratio recordings which are sometimes
not picked up by wheel measuring tools (Groom, S., Doshi-Keeble,
F., and Williams, P., 2022).

Wheel Load The diagonal wheel load imbalance is an appropriate met-
ric to use for the detection of arbitrary vehicle defects at a bogie
or vehicle level which could give rise to reduced derailment resis-
tance. A statistical analysis of wheel load data can be used to identify
anomalous characteristics which could be symptoms of defective or
degraded suspensions (Shackleton, P., Sztrauch, K., Eickhoff, B., and
Bevan, A., 2022). A fusion method to associate the collected samples
to their positions over the wheel circumferential coordinate is use-
ful to detect the wheel defect (Alemi, A., Corman, F., Pang, Y., and
Lodewijks, G., 2019).

Profile Measurement and Stability Approach to analyze vehicle behavior
at high speed (up to 250km/h) by combining a wheel profile measure-
ment (photo laser) with a stability measurement (vertical and lateral
forces) and using their joint data (Mittermayr, P., Schmid, R., Zottl,
W., Betterle, E., Occioni, G., 2019). Integrating the two independent
systems allows for gaining insight from the correlation between pro-
file shape and running behavior and the associated load collectives.

Finally, the track condition also impacts the wheelset degradation. As TRACK

the wheel hardness increases, the rail wear remains the same in the straight
section, but as the curve radius becomes smaller, the rail wear increases
again (Trausmuth, A., Schmid, R., Dinhobl, G., and Badisch, E., 2022).
Similarly, rail condition in terms of wear and corrugation can be captured
from sensors such as accelerometers mounted on the axleboxes (Oberhuber, ACCELEROMETER

H., Neuhold, J., Orta Roca, J., Brandl, D., and Schönhuber, B., 2021), and
track that is not fit for purpose can also lead to RCF (Burroughs, D., 2021a).
Thus, predictive maintenance is seen as a means to protect infrastructure
against these expected factors, in addition to external causes such as cli-
mate change. The use of real-time sensors and simulation with forecasting
capabilities helps in decision-making (Burroughs, D., 2021b).
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2.1.8 Brake

While the rail industry has devoted a significant amount of research to better
understand the causes of low adhesion and suitable mitigation, there remain
gaps in knowledge to overcome this challenge. Continuing optimization of
the wheel-rail interface and the achievement of reliable braking are chal-BRAKING

lenges faced by railway networks around the world, because their improve-
ment offers capacity increase (Englbrecht, M., 2022). Specifically, decel-
eration control, wheel slide protection, and smart sanding improve brak-
ing (Altman, B., and Odetunde, S., 2022). In turn, better brakes have an
impact on carbon pads and wheel treads.

Air leakage in braking pipes is a commonly encountered mechanicalLEAKAGE

defect on trains. A severe air leakage will lead to braking issues and there-
fore decrease the reliability and cause train delays or stranding. Air leakage
causes a failure when the compressor idle time is shorter than the compres-COMPRESSOR

sor run time, that is, when the speed of air consumption is faster than air
generation (Lee, W.-J., 2017). Modeling the pneumatic brake system to
estimate the pressure along the brake line in real time and understanding
its behavior during operation is crucial to identify the causes of technical
problems and to improve driving techniques (Teodoro, I. P., Ribeiro, D. F.,
Botari, T., Martins, T. S., and Santos, A. A., 2019).

Finally, the root problem of rail noise is the braking technology used,
which affects the wheels’ surface and increases its roughness, resulting in
more rolling noise (Burroughs, D., 2018). In turn, the severe vibration andVIBRATION

high stress state of the brake disc could cause it to crack in the region near
the bolts (Wang, Z., Mo, J., Gebreyohanes, M. Y., Wang, K., Wang, J., and
Zhou, Z., 2022).

2.1.9 Bearings

The axle bearing is a heavy-duty safety-critical railway element (Tsui, K. L.,AXLE

Chen, N., Zhou, Q., Hai, Y., and Wang, W., 2015). It bears the weight of the
train, minimizes the friction with the rotating axle, and its failure in service
might cause derailment. Therefore, its maintenance is of utmost importance
to guarantee the availability of the fleet.

While intrusive monitoring practices involving the extraction of a sam-
ple of grease and the ensuing wear particle analysis dispel all doubts aboutGREASE

the actual degradation condition of a bearing, usually these assets are in-
spected on a frequent basis using other less intrusive methods. In this sense,
the physical variables that lead these inspections are the temperature and the
vibration.
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Temperature

Hot Axle Box Detectors are used as a safety component in the railways,
but identify faulty bearings too late to be useful for maintenance schedul-
ing (Entezami, M., Roberts, C., Weston, P., Stewart, E., Amini, A., and
Papaelias, M., 2020). The existing bearing temperature fault detection and TEMPERATURE

early warning systems have a high false alarm rate and insufficient early
warning ability. Thus, the bearing temperature data is oftentimes fused with
other spatio-temporal features (including exterior temperature, train speed,
etc.), and time series anomaly detection methods are then utilized to conduct
the diagnosis. Results indicate the combined methods can effectively evalu-
ate the bearing condition and provide supportive information for condition-
based maintenance (Si, J., Shi, H., and Yang, J., 2022; Liu, Y. Z., Zou, Y.
S., Wu, Y., Zhang, H. Y., and Ding, G. F., 2022; Garrido Martı́nez-Llop, P.,
Sanz Bobi, J. de D., and Huera Plaza, A., 2022).

Vibration

Vibration analysis is a strategy that monitors the acoustic signature of each VIBRATION

axle at line speed and identifies the presence of rolling surface defects in
bearings while automatically ranking their severity: a bearing fault excites
a structural response and this vibration radiates from the housing as sound
pressure waves (Man, T., 2018). Among the different radiated energy bands,
Ultrasound Acoustic Emissions (¿100kHz) can detect early stage defects,
including lubrication contamination, earlier than the other sensing technolo-
gies (Entezami, M., Roberts, C., Weston, P., Stewart, E., Amini, A., and
Papaelias, M., 2020). For example, accelerometers typically provide band- ACCELEROMETER

widths an order of magnitude lower. However, the start of a degeneration,
i.e., the incipient point of failure, can still be determined up to 6-7 months
before the asset is replaced (Barrow, K., 2018a).

Experimentally, a bearing test rig for Very High Speed Trains has con-
firmed the feasibility of a CBM approach on several bearing damage such
pitting and oxidation on rollers, inner and outer races, for different envi-
ronmental conditions. Envelope Analysis and Spectral Kurtosis were the
most effective and robust techniques, both at constant speed and in slow
transients, such as the ones that characterize the rail environment (Pennac-
chi, P., Bruni, S., Chatterton, S., Borghesani, P., Ricci, R., Marinis, D.,
Didonato, A., and Unger-Weber, F., 2011). Other useful signal processing
indicators and techniques include the Time-Synchronous Averaging for fil-
tering (at axle angular speed), statistical features (e.g., root mean square,
peak-to-peak, kurtosis, crest factor, skewness), and specific bearing algo-



26 2. RAILWAY-FOCUSED PHM

rithms (e.g., ball energy, cage energy, inner race energy, and outer race en-
ergy) (Zhu, J., Nostrand, T., Spiegel, C., and Morton, B., 2014). The results
show that the longitudinal vibration features (i.e., the peak-to-peak value)
are more sensitive for inner race fault identification, while the vertical vi-
bration features (i.e., skewness value) are more suitable for outer race fault
identification (Wang, J., Yang, J., Bai, Y., Zhao, Y., He, Y., and Yao, D.,
2021).

2.1.10 Pantograph–Catenary Interface

Railway pantographs are used around the world for collecting electrical en-PANTOGRAPH

ergy to power railway vehicles from the overhead catenary (Xin, T., Roberts,
C., Weston, P., and Stewart, E., 2020). Faults in the pantograph system de-
grade the quality of the contact with the catenary and reduce the reliabilityCATENARY

of railway operations. To track the degradation of this asset, a Contact Line
Monitoring system captures video data with cameras installed on commer-
cial train cars and uses AI technology to analyze the stream of images. This
system has enabled significant reductions in the number of personnel needed
to perform inspections, and has also helped to achieve low-cost operations.
Additionally, the image analysis using AI technology has improved the pre-
cision of the inspections (Matsumoto, T., Nishidouzono, K., Fukaya, F.,
Koga, S., Nakamura, H., and Kameda, M., 2022).

Condition detection and evaluation of the pantograph–catenary electri-
cal contact is mainly led by three technologies: ultrasounds, image recogni-
tion, and spectral diagnosis (Wu, G., Dong, K., Xu, Z. et al., 2022). How-
ever, additional sensing inputs such as the acceleration on the bow sus-
pension of the pantograph is helpful to detect the shocks and trigger the
recordings (Ben Taleb Ali, M., Schrevre, T., Pedron, A., Blanvillain, G.,
and Auditeau, G., 2022). Common defect types that are detectable using
this approach include contact wire splice, neutral section, section insulator,
catenary obstacle, etc.

The sliding contact between the pantograph and catenary is what allowsSLIDING CONTACT

the correct operation of electric trains. This contact induces wear on the
components involved in the process, namely the carbon strip on the panto-CARBON STRIP

graph and the metal wire on the catenary. Heuristic wear models (as com-
plex parametric functions) can be used together with statistical data of the
current, contact force, and line speed retrieved from field measurements to
predict the wear when operations are carried on along a railway line (Derosa,
S., Nåvik, P., Collina, A., Bucca, G., and Rönnquist, A., 2020). The lateral
speed does not affect the mechanical wear and electrical wear associated
with the arcs that commonly occur. However, it affects the electrical term
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associated with the Joule effect (Derosa, S., Nåvik, P., Collina, A., Bucca,
G., and Rönnquist, A., 2021). Lastly, multi-body approaches model the pan-
tograph with detail and can accommodate the non-linear characteristics of
the real system and include external loads that act on the pantograph dur-
ing operation, e.g., aerodynamic loads, which are especially important when
studying catenary gradients (Rebelo, J., Pombo, J., Antunes, P., Santos, J.,
Magalhães, H., and Ambrósio, J., 2022).

Such physical-numerical hybrid simulation can represent the dynamic
interaction between the pantograph and the overhead line, and phenomena OVERHEAD LINE

due to the span-passing frequency such as the uplift of the contact wire at
the support point can be evaluated. Furthermore, the effect of friction due to FRICTION

sliding between contact strips and contact wire is also represented in these
simulated data (Kobayashi, S., Koyama, T., and Harada, S., 2022). How-
ever, the capability of these numerical tools has been, in general, limited
to pantograph-catenary dynamic analyses set in a single straight railway
track (Antunes, P., Pombo, J., Ambrósio, J., Rebelo, J., Santos, J., 2022).

All this modelling effort has also led to focus on reliability approaches RELIABILITY

for maintaining the pantograph-catenary interface. First, the reliability of
the key parts of the system are modeled using Weibull distribution. Second,
a reliability margin is proposed to expand the maintenance time from point
to interval, and the reliability margin is optimized to minimize the mainte-
nance cost. Then, a preventive opportunistic maintenance schedule can be
arranged on the basis of the optimal reliability margin. This method can
reduce the number of maintenance schedules and can effectively save the
maintenance cost (Cheng, H., Cao, Y., Wang, J., Zhang, W., and Zeng, H.,
2020).

2.2 Technologies Applied to Product Development

Regarding the application of AI in the paradigm of maintenance optimiza-
tion for the Industry 4.0 Pinciroli, L., Baraldi, P., and Zio, E. (2023), the
main scientific research efforts published in the surveyed papers have been
seen in the subdomain of rail maintenance and inspection (Tang, R., De Do-
nato, L., Bešinović, N., Flammini, F., Goverde, R. M. P., Lin, Z., Liu, R.,
Tang, T., Vittorini, V., and Wang, Z., 2022; Bešinović, N., De Donato, L.,
Flammini, F., et al., 2022). What follows is a deeper analysis into some of
the technologies that have enabled the application of AI to railway predic-
tive maintenance.
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2.2.1 Smart Sensors

The Industrial Internet-of-Things (IoT) has emerged as one of the lead-INTERNET-OF-THINGS

ing technologies to deploy the remote condition monitoring of ma-
chines (Boyes, H., Hallaq, B., Cunningham, J., and Watson, T., 2018; Com-
pare, M., Baraldi, P., and Zio, E., 2019), especially when such machines are
transportation assets that move around the territory. With the range of sen-
sors and IoT solutions on the market growing exponentially, operators and
infrastructure managers are gathering more data than ever, which signals a
change in the culture. However, despite of the successful results from the
proof of concepts, many cases failed or were dropped because the business
case was not obvious (Burroughs, D., 2019a). In this sense, the failure to
start a pilot or to go beyond its initial deployment, maybe due to IT arro-
gance, complications, budget, focus, etc., is what thwarts its potential rollout
in the market (Miciek, R., 2019).

Remote monitoring equipment provides a centralized system for fleetREMOTE

diagnostics and supports the shift to predictive maintenance (Smith, K.,
2018). However, as the volume of data increases and ever more devices
become connected to the IoT, centralized processing of data could become
impractical due to long cycle times and high consumption of computing
resources, which conflict with the real-time response requirements of fault
diagnosis (Zhang, K., Huang, W., Hou, X., Xu, J., Su, R., and Xu, H., 2021).
Therefore, it may be necessary to transfer processing capability out into the
field, and edge computing is currently a focus for IoT solutions (Barrow,EDGE COMPUTING

K., 2018a). In this approach, various sensors are installed on the asset,
and upon acquiring the data and extracting the information, they create a
baseline pattern (Aimar, M., and Somà, A., 2018), and prescriptions are
eventually pushed to the cloud (Burroughs, D., 2021b).

Alstom has been developing different IoT network products for over 10
years with a focus on vibration analysis through accelerometers (Trilla, A.,ACCELEROMETER

and Gratacòs, P., 2013, 2016; Trilla, A., Gratacòs, P., Guinart, D., Alessi,
A. and Lamoureux, B., 2016; Trilla, A., Janjua, F., and Bermejo, S., 2019).
Some of the developed solutions focus on the needs of the shop floor for
conducting inspections at the depot. Others focus on the needs of the remote
maintainer, and carry out synthetic indices from vibration measurementsVIBRATION

while a gateway acquires correlated GPS and odometry information. These
products pave the way to the future development of a completely wireless
system able to perform condition monitoring of both the vehicle and the
infrastructure (Zanelli, F., Sabbioni, E., Carnevale, M., et al., 2023). Finally,
the joint operation of the IoT and AI are also offering new insights into
how cities function and how services can be optimized to meet the everyday
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needs of urban dwellers (Barrow, K., 2019b).

2.2.2 Machine Vision Inspection

The technology provided by machine vision software provides the tools for
rail companies to rethink their approach to reliability engineering (Kilian,
K., Kilian, M., Mazur, V., and Phelan, J., 2016). Specifically, Machine
Learning techniques are at the foundation of Computer Vision. In addi- COMPUTER VISION

tion to helping increase the capacity of the line, e.g., reducing the headway
between trains by 4 to 8 minutes, it can enable railways to monitor rolling
stock and infrastructure, and to target maintenance and repair activities (Ro-
manchikov, A., and Smith, K., 2022). Additionally, the real-time detection
of interesting items (e.g., track, people, signs, animals...) can improve the
driver situational awareness and train protection (Burroughs, D., Wust, D.,
and Wust, J., 2023).

Illustrative applications of Machine Vision Inspection for predictive
maintenance include different solutions for the brakes and the wheels:

• A Brake Inspection Monitor diagnoses the brakes of trains passing
the site. It measures the remaining material in each brake pad and
then calculates a replacement window based on the historical wear
rate. Important parameters that are captured include: pad thickness,
pad wear rates, sticking brakes, presence of the brake key, and identi-
fication of missing brake pads (Man, T., 2018).

• A Wheel Profile Monitor measures the wheel profile of trains that
pass the installation site at steady operating speeds. The system firstly
captures images of the wheels and processes them with advanced ma-
chine vision algorithms to measure key wheel parameters, including:
flange height and width, tread hollowing, back-to-back dimension,
inner and outer rim thickness, wheel diameter and differential, and
wheel profile trace (Man, T., 2018). More innovative systems use
digital high-speed imaging along with 3D laser scanning for obtain-
ing these parameters (Burroughs, D., 2021b).

Alstom has developed a train monitoring system that is aimed at op-
timizing the maintenance of brake pads, pantograph carbon strips, and
wheelsets, through the deployment of the PHM methodology and its as-
sociated techniques. It integrates a series of acquisition subsystems with
lasers and 3D cameras that capture the related measures as a train traverses
its portal. Then, it automatically conducts the processing and analysis of the
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collected data, and finally it triggers alarms and issues reports to the main-
tenance staff (Lortie, M., and Holmes, E., 2014; Trilla, A., and Cabré, X.,
2018; Trilla, A., Dersin, P., and Cabré, X., 2018).

2.2.3 Technical Language Processing

In the railway industry, a significant amount of data is stored in the tex-
tual format. The advanced development of Natural Language Processing
(NLP) and text mining techniques enable automatic knowledge extractionTEXT MINING

and discovery from such documents. Text-based research and analysis are
bound to have a meaningful impact on almost every aspect of the railway
sector (Dong, K., Romanov, I., McLellan, C., and Esen, A. F., 2022). Re-
search shows that over 82% of the NLP-related papers were published in the
last 5 years, indicating a growing research interest in this field.

Railway safety is the most studied topic in text-based railway researchSAFETY

with over 28% of published papers, and is closely followed by fault di-
agnosis with 25% of published articles (Dong, K., Romanov, I., McLel-
lan, C., and Esen, A. F., 2022). Communication errors in railway systems
could pose a serious threat to safety (Nakamura, R., 2019). On average,
the cause of these errors is found in the ambiguity of the language used to
express the information. Overall, NLP has the potential for analyzing ac-
cident data (Valcamonico, D., Baraldi, P., Amigoni, F., and Zio, E., 2022;
Heidarysafa, M., Kowsari, K., Barnes, L., and Brown, D., 2018; Song, B.,
Zhang, Z., Qin, Y., Liu, Y., and Hu, H., 2022), and assist the risk and in-
cident analysis experts to study causal relationships on failures towards the
overall safety in the rail industry (Liu, J., Schmid, F., Li, K., and Zheng, W.,
2021; Syeda, K. N., Shirazi, S. N., Naqvi, S. A. A., Parkinson, H. J., and
Bamford, G., 2019). The frequency, distribution, and co-occurrence of text
concepts form unsupervised patterns that can provide useful indicators for
investigations, and assist incident experts in establishing root cause analysis
using relevant supporting information (Farzad, A., and Gulliver, A., 2020).
However, they require processing approaches that are different from para-
metric sensor data (Fink, O., Wang, Q., Svensén, M., Dersin, P., Lee, W.-J.,
and Ducoffe, M., 2020).

NLP provides an effective approach for improving the collection and
analysis of text-based maintenance data, and eventually enable accurate
decision-making (Brundage, M. P., Weiss, B. A., and Pellegrino, J., 2020).
NLP can be applied to text entry fields of maintenance records to guarantee
the data quality before doing any statistical analysis or making any deci-
sion (Stenström, C., Al-Jumaili, M., and Parida, A., 2015). To process large
amounts of unstructured text information about railway equipment faults in
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the form of natural language, topic models have been used to extract the TOPIC MODEL

semantic features of the text, and text classifiers have been used to construct
a signal equipment fault diagnostic model (Shi, L., Zhu, Y., Zhang, Y., and
Su, Z., 2021).

Finally, the bleeding edge in industrial NLP research is called Techni-
cal Language Processing (TLP), which presents a holistic, domain-driven TECHNICAL LANGUAGE

approach, to use NLP in a technical engineering setting (Brundage, M. P.,
Sexton, T., Hodkiewicz, M., Dima, A., and Lukens, S., 2021). In TLP, main-
tenance documents like work orders are relatively small in size and contain WORK ORDER

misspellings, domain-specific jargon, abbreviations, and non-standard sen-
tence structure.

2.2.4 System Log Analytics

Subsystem event data are generally available through time-stamped nomi-
nal variables where typically no single message is decisive to raise an alarm. NOMINAL VARIABLE

Thus, the density of information is low, along with the sparsity of this rep-
resentation. These characteristics pose challenging encoding questions to
the PHM engineers who are responsible for designing rules and procedures
to diagnose anomalies in this environment. Such nominal event data have EVENT DATA

been commonly tackled as discrete-valued variables using counts of their
occurrences in a sliding-time window, followed by a supervised learning
scheme (Sammouri, W., Côme, E., Oukhellou, L., Aknin, P., and Fonlla-
dosa, C.-E., 2014). In this sense, fuzzy classification enables the use of
linguistic variables for the definition of the time intervals in which the fail-
ures are predicted to occur, which provides a more intuitive way to handle
the predictions by the users, and increases the acceptance of the proposed
approach (Fink, O., Zio, E., and Weidmann, U., 2015c). Also, when only
discrete-event data are available, tackling a regression problem as a clas-
sification by fixing a time interval was found to be sufficiently precise for
the operators to be able to anticipate the prediction and schedule a pertinent
maintenance task prior to the occurrence of the event (Fink, O., Zio, E., and
Weidmann, U., 2015a,b; Lee, W.-J., 2017).

Finally, identifying frequent item-sets is also a popular data-mining task
to discover association rules in the events (Shabtay, L., Fournier-Viger,
P., Yaari, R., and Dattner, I., 2021). Furthermore, in order to tackle the
combinatorial explosion problem, on-the-fly and incremental techniques for
fault diagnosis of discrete event systems have also been explored (Liu, B.,
Ghazel, M., and Toguyéni, A., 2018).
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CHAPTER 3

DEEP LEARNING-BASED PHM

Every time I find a system that isn’t a gradient search, I insert a smooth
curve; then I can cast it in the general form of a gradient search. In fact,

that’s about all there is to neural networks.
– David E. Rumelhart (1993)

THERE are two fundamental approaches to tackle PHM objectives:
model-based and data-driven. Moreover, these are not mutually ex-

clusive. Hybrid physical/data-driven approaches such as the digital twin DIGITAL TWIN

utilize virtual representations of some aspect of a system to provide quan-
tifiable benefit (Moyne, J., Balta, E. C., Kovalenko, I., Faris, J., Barton,
K., and Tilbury, D. M., 2020). However, there are no context-independent
or usage-independent reasons to favor one learning method over another.
Methods that are effective for forecasting risk and informing maintenance
decisions for individual components do not readily scale to sub-system or
system level insights. A holistic modeling approach is needed, one that
incorporates available structural and physical knowledge and naturally han-
dles the complexities of actively fielded and maintained assets (Miller, K.,
and Dubrawski, A., 2019). System conceptualization modeling and verifi-
cation, dynamic and automatic pattern recognition and environment adap-
tation, and sequential decision optimization are key points to increase the
chances of success (Hu, Y., Miao, X., Si, Y., Pan, E., and Zio, E., 2022).

The data-driven techniques on which this dissertation is focused are DATA-DRIVEN
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based on collecting experimental data and extracting meaningful features
to determine if the system is normal (i.e., the healthy condition) or are there
any symptoms of failure. If the latter is true, the failure must be classi-
fied and categorized to identify the fault and determine its severity (Khan,
S., and Yairi, T., 2018). Depending on the way this knowledge is learned,
there are different ways to approach the solution. In the supervised case, theSUPERVISED

operating user shall have complete data of all failures modes and expected
behaviors. In the semi-supervised case, the user has access to limited data,
e.g., often only healthy data is available. In the worst-case scenario, i.e., the
unsupervised case, the system is already operating and there is no knowl-UNSUPERVISED

edge about its condition (Fink, O., Wang, Q., Svensén, M., Dersin, P., Lee,
W.-J., and Ducoffe, M., 2020).

This chapter is organized as follows: Section 3.1 provides a review of
the Deep Learning fundamentals that triggered the recent wave of neural
network research, along with its challenges and open questions. Then, Sec-
tion 3.2 describes the specific techniques used in product development that
address the former topics.

3.1 Main Topics in the Deep Learning Research
Community

Deep Learning (DL) has gained increasing attention due to its advantagesDEEP LEARNING

in data classification and feature extraction problems. It is an evolving re-
search area with diverse application domains. Hence, it has the potential to
increase overall system resilience or cost benefits for maintenance, repair,
and overhaul activities (Khan, S., and Yairi, T., 2018).

3.1.1 Breakthroughs in Neural Networks

In the literature, there are several excellent reviews by leading scientists in
the DL field as the latest generation of neural networks (Schmidhuber, J.,NEURAL NETWORKS

2015; LeCun, Y. and Bengio, Y., and Hinton, G. E., 2015; Raghu, M., and
Schmidt, E., 2020). This section provides a minimal set of ideas compiling
most of the basic knowledge necessary to understand modern DL research,
in historical order (Wang, H., and Raj, B., 2017; Britz, D., 2020).

Multilayer Perceptron and Backpropagation (1986)

A Multilayer Perceptron (MLP) is basically a shallow state-less feed-MULTILAYER PERCEPTRON

forward network with at least 3 layers: an input layer I , a hidden layer



3.1. Main Topics in the Deep Learning Research Community 35

x1

x2

...

xN

i1

+1

i2

...

iN

+1

h1

h2

...

hH

o1

o2

...

oK

y1

y2

...

yK

WIH WHO

Figure 3.1 Multilayer Perceptron network where O = g(I · WIH) · WHO. The
non-linear function g is inherent in the hidden layer. In this diagram, the bias terms
“+1” are made explicit.

H , and an output layer O. These layers are pairwise connected with two
dense networks WIH and WHO. Additionally, the intermediate hidden layer
equips a non-linear activation function g that enables the MLP to repre-
sent any continuous function given enough model expressiveness, i.e., the
number of nodes H . This is known as the Universal Approximation The-
orem (Cybenko, G., 1989; Hornik, K., 1989). Finally, the MLP is suitable
for tackling hetero-association problems, i.e., relating an arbitrary input X
(with vector length N ) to an arbitrary output Y (with vector length K), see
Figure 3.1.

Traditionally, MLP’s were trained using backpropagation gradient de-
scent where the weights were updated for each layer as a function of the
derivative of the previous layer (Rumelhart, D. E., Hinton, G. E., and
Williams, R. J., 1986). However, there were limitations to this approach
when the depth of the network was increased because these gradients van-
ished. Today, DL provides a series of methods that overcome the van-
ishing gradient problem and therefore enable training larger neural net-
works (Khan, S., and Yairi, T., 2018).

Autoencoders, Embeddings, and Weight Pre-training (2006/2009)

The Autoencoder is a particular neural architecture that inherently learns AUTOENCODER

to replicate data through a compressed representation in the middle “bot-
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Figure 3.2 Autoencoder architecture, where D is the data dimensionality and H
is the size of the hidden layer, which defines the representational capacity of the
network. The compressive encoding function of the model is ensured as long as
H < D.

tleneck” layer, i.e., the embedding. This way, it extracts the most use-EMBEDDING

ful/relevant features from the data in an unsupervised auto-associative man-
ner (Kramer, M. A., 1992; Stone, V. M., 2008). Given that the task of
auto-association is easier than hetero-association, Autoencoders were the
first technique that showed success in building the early deep neural de-
signs (Hinton, G. E., and Salakhutdinov, R. R., 2006).

The architecture of an Autoencoder shows a convergent structure from
its input dimensionality D into H at half of its depth, and then it diverges
back to D toward its output, see Figure 3.2. The Autoencoder is trained to
encode the input into some lower-dimensional representation so that it may
thereafter be reconstructed. As a result, the network learns a compressedRECONSTRUCT

distributed representation of the data that captures its main factors of varia-
tion (Bengio, Y., 2009).

Finally, the concept of pre-training refers to first training a model toPRE-TRAINING

perform a given task, and then reusing the learned embedding through its
parameters as an initialization to learn a new model on a related task. This
head-start to the optimization procedure is what was initially used to create
the first deep neural architectures using on stacks of Autoencoders.

Xavier Initialization (2010)

When the weights of a neural network layer are initialized with normally-
distributed values, it is easy for them to explode or vanish, therefore prevent-
ing training. Assuming the values from the previous layer follow Gaussian
distributions, their variances accumulate, and thus they should be scaled
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down proportionally to the number of inputs to keep them bounded. The
same criterion holds in the reverse direction (i.e., with the number of out-
puts). Xavier Initialization takes these fan-in and fan-out considerations into INITIALIZATION

account to randomly initialize the weights of a neural network (Glorot, X.,
and Bengio. Y, 2010).

Rectified Linear Unit (2011)

Traditional neural networks used sigmoids for their intermediate activations.
Sigmoids (most commonly the logistic and hyperbolic tangent functions)
have the advantages of being differentiable and having a bounded output.
However, their derivatives decay quickly away from zero, and as more lay-
ers are stacked, the gradients disappear. This is known as the vanishing
gradient problem and is one of the reasons that networks were difficult to VANISHING GRADIENT

scale depthwise.
Rectified Linear Units (ReLU) helped solve the vanishing gradient prob- RECTIFIED

lem and paved the way for deeper networks (Glorot, X., Bordes, A., and
Bengio. Y, 2011). The derivative of a ReLU is a step function, and thus pre-
vents the positive gradients from disappearing. However, ReLU still have
some flaws: they are non-differentiable at zero, they can grow unbounded,
and neurons could become inactive due to saturation.

Dropout (2012)

One of the most prominent reasons for causing overfitting is co-adaptation, OVERFITTING

which means that some neurons are highly dependent on others. However,
overfitting is greatly reduced by randomly omitting (i.e., dropping), half of
the units on each training case (Hinton, G. E., Srivastava, N., Krizhevsky,
A., Sutskever, I., and Salakhutdinov, R. R., 2012; Srivastava, N., Hinton,
G., Krizhevsky, A., Sutskever, I., and Salakhutdinov, R., 2014). The use
of Dropout, which introduces a random deactivation of units, has become DROPOUT

a crucial component for improving the generalization ability of all kinds of
neural models.

Convolutional Neural Networks (2012)

The Convolutional Neural Network (CNN) is a particular deep neural ar- CONVOLUTIONAL

chitecture that uses a convolution operation in place of the general matrix
multiplication. This process naturally involves learning a set of filters (or
kernels) that detect useful local patterns in the input signals. This fact turned LOCAL PATTERN

the conventional manual feature extraction design into an automated pro- FEATURE EXTRACTION
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i1
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i4
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Figure 3.3 Convolutional layer for an input vector I = (i1, i2, ...), a 1D second-
order filter W = (w1, w2, w3), and an output vector O = (o1, o2, ...), which clearly
shows that O = I ∗W . Edge thickness indicates parameter reuse.

cess, which is its primary advantage. Additionally, since the weights of the
filters are shared and reused throughout this sparsely connected architecture,
there are less parameters to be learned, and this makes the CNN less prone
to overfit the data (Duda, R. O., Hart, P. E., and Stork, D. G., 2001). For
example, Figure 3.3 shows the architecture of a convolutional layer.

The linear function that the CNN layer implements, which is the convo-
lution, is sometimes defined as the cross-correlation function in the litera-
ture. For real-valued functions of a continuous or discrete variable, convolu-
tion differs from cross-correlation only in that the filter (or the input signal)
is reflected in the computation. From a pragmatic standpoint, where the ob-
jective is to extract salient data characteristics, this nuance is not relevant,
though. The features that the CNN extracts are simply good-enough for all
tasks, including classification (i.e., diagnosis) and regression (i.e., progno-
sis) objectives (Jernelv, I. L., Hjelme, D. R., Matsuura, Y., and Aksnes, A.,
2020).

The revolutionary architecture comprising a sequence of convolutional
layers, ReLU nonlinearity, and max-pooling (i.e., subsampling), became the
accepted standard for Computer Vision applications after performing signif-
icantly better than previous methods at classifying images (Krizhevsky, A.,
Sutskever, I., and Hinton, G. E., 2012).

Distributed Representations (2013)

In a distributed representation, each entity is represented by a pattern ofDISTRIBUTED

REPRESENTATION
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activity over many computing elements, and each computing element is in-
volved in representing many different entities. This gives rise to dense vec-
tor spaces (in contrast to sparse local representations where each entity is DENSE VECTOR SPACE

represented by one computing element). A notable illustration of this con-
cept is the word embedding, which became the dominant way to encode text EMBEDDING

for DL Natural Language Processing models (Mikolov, T., Chen, K., Cor-
rado, G., and Dean, J., 2013; Mikolov, T., Sutskever, I., Chen, K., Corrado,
G., and Dean, J., 2013; Mikolov, T., Yih, W.-t., and Zweig, G., 2013). This
concept is based on the idea that words which appear in similar contexts
likely have similar meanings, and thus can be used to embed words into
vectors to be used downstream in other models.

Deep Reinforcement Learning (2013)

Reinforcement Learning differs from Supervised Learning, i.e., example REINFORCEMENT LEARNING

driven learning, in that an agent must learn to maximize the sum of rewards
over multiple time steps instead of just predicting an outcome. In this sce-
nario, the agent interacts directly with the environment (i.e., an intervention)
and each action affects the next. Thus, the training data is not independent
and identically distributed, which makes the training of a straightforward
DL model unstable.

The objective for training the value-based reward function is derived REWARD

from the Bellman equation, which decomposes it into the current reward
plus the maximum (discounted) future reward of the next state. The break-
through application of this paradigm was attained by playing computer
games from raw pixel inputs (Mnih, V., Kavukcuoglu, K., Silver, D., Graves,
A., Antonoglou, I., Wierstra, D., and Riedmiller, M., 2013).

Encoder-Decoder Networks with Attention (2014)

Traditionally, learning sequences was tackled through a recurrent network RECURRENT

such as a Long Short-Term Memory (LSTM), which maintains a memory
of previously processed inputs (Sutskever, I., Vinyals, O., and Le, Q. V.,
2014). However, these recurrent models often had difficulty dealing with
dependencies over long time horizons, and would “forget” earlier inputs
because their gradients needed to propagate through many time steps. To-
day, the attention mechanism helps alleviate the problem by unfolding the ATTENTION

sequence in time and introducing shortcut connections, thus giving the net-
work an option to adaptively review earlier time steps (Bahdanau, D., Cho,
K., and Bengio, Y., 2015).
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Adam Optimizer (2014)

Neural networks are generally trained by minimizing a loss function usingLOSS FUNCTION

a gradient descent optimizer. However, many of these optimizers contain
many tunable hyperparameters, and finding the right settings for a specific
problem not only reduces training time but can also lead to better results due
to finding a better local minimum of the loss function. The Adam optimizerADAM OPTIMIZER

was proposed to use the first and second moments of the gradients to auto-
matically adapt the learning rate for each parameter separately (Kingma, D.
P., and Ba, J. L., 2015). The result turned out to be quite robust and less
sensitive to hyperparameter choices.

Generative Adversarial Networks (2014)

The goal of generative models is to create realistically-looking data sam-GENERATIVE MODEL

ples. The basic idea behind Generative Adversarial Networks (GAN) is toADVERSARIAL

train two networks in tandem: a generator and a discriminator. The goal
of the generator is to produce samples that fool the discriminator, which is
trained to distinguish between real and synthetic (i.e., artificially generated)
data (Radford, A., Metz, L., and Chintala, S., 2016). Relying on a mini-max
game between the two networks, GANs are able to model complex high di-
mensional distributions (Goodfellow, I. J., Pouget-Abadie, J., Mirza, M.,
Xu, B., Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y., 2014).

Residual Networks (2015)

Traditionally, training deep networks has been a challenging optimization
problem due to the vanishing gradients. Residual Networks (ResNet) pro-RESIDUAL

vided a workaround by using identity shortcut connections between the in-SHORTCUT CONNECTION

put and the output of different layers that help the gradients flow (He, K.,
Zhang, X., Ren, S., and Sun, J., 2015). This trick enabled learning very
deep neural architectures.

Batch Normalization (2015)

Training deep neural networks is complicated due to the fact that the dis-
tribution of each layer’s inputs changes during training, as the parameters
of the previous layers change. This problem is known as internal covariate
shift, and its solution involves normalizing the layer inputs by tracking theNORMALIZING

statistics during training in batches, and using them to scale activations to
zero mean and unit variance (Ioffe, S., and Szegedy, C., 2015).
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Transformers (2017)

The traditional problems that recurrent networks had for learning sequences
were definitively solved by Transformers, which unfolded the recurrence TRANSFORMER

and introduced multiple feed-forward self-attention layers, processing all in-
puts in parallel, and producing relatively short paths between inputs and out-
puts (Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez,
A. M., Kaiser, L., and Polosukhin, I., 2017), making them suitable for gradi-
ent descent optimization. Additionally, Transformers had to use positional
encodings to inform about the order of the data, which was implicit in the
recurrence. Transformers have since then become the standard architecture
for the vast majority of NLP and other sequence tasks, and have even made
their way into architectures for Computer Vision.

Neural Architecture Search (2017/2018)

Neural Architecture Search (NAS) has become common practice in the field ARCHITECTURE SEARCH

for maximizing the performance of neural networks. Instead of manu-
ally designing architectures, NAS allows this tedious process to be auto-
mated (Zoph, B., and Le, Q., 2017). To accomplish this task, different
criteria can be considered: search space, search strategy, and evaluation
strategy (Elsken, T., Metzen, J. H., and Hutter, F., 2019; Ren, P., Xiao, Y.,
Chang, X., Huang, P.-Y., Li, Z., Chen, X., and Wang, X., 2020).

Bidirectional Contextual Embedding (2018)

Bidirectional Contextual Embedding (BERT) was the latest of such pre-
training developments that gave birth to the first deep neural architectures
in 2006 (Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K., 2018). In
the application context of NLP, BERT learned a language model that was
pre-trained on predicting masked (intentionally removed) words anywhere
in the sentence (i.e., bidirectionality), and whether if two sentences were BIDIRECTIONALITY

likely to follow each other. This unsupervised pre-trained model, which
learned some general properties about language, could then be fine-tuned to
solve supervised tasks.

Transfer Learning (2018)

Transfer Learning focuses on reusing a model (and thus its inherently TRANSFER LEARNING

learned knowledge) trained on one problem to a different but related prob-
lem or environment. Transfer Learning is classified into four categories:
instances-based (weight instances in the source domain), mapping-based
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(new space with better similarity), network-based (pre-training in the source
domain and fine-tuning in the target domain), and adversarial-based (find
features suitable for the two domains). Recent research focuses on trans-
ferring knowledge using unsupervised or semi-supervised learning for the
increased availability of data (Tan, C., Sun, F., Kong, T., Zhang, W., Yang,
C., and Liu, C., 2018).

Double Descent (2019)

Traditionally, model expressiveness follows the bias-variance tradeoff: itBIAS-VARIANCE

must match the structural complexity of the data to avoid underfitting (too
few parameters) and overfitting (too many parameters). In practice, how-
ever, DL models are often overparameterized and yet exhibit a good perfor-
mance (Belkin, M., Hsu, D., Ma, S., and Mandal, S., 2019; Nakkiran, P.,
Kaplun, G., Bansal, Y., Yang, T., Barak, B., and Sutskever, I., 2019). Dou-
ble Descent posits that gradient descent is more likely to find these smootherDOUBLE DESCENT

zero-training-error networks, which generalize well despite being overpa-
rameterized.

The Lottery Ticket Hypothesis (2019)

The Lottery Ticket Hypothesis asserts that most credit of a performantLOTTERY TICKET

model comes from a certain inherent subnetwork due to a lucky parame-
ter initialization. Thus, larger models have a higher chance of having these
subnetworks. This line of research focuses on pruning the irrelevant weights
and using the ones that remain as pre-training, which yields a performance
close to the original loss (Frankle, J., and Carbin, M., 2019).

Large Models, Self-Supervised Learning, and Knowledge Distillation
(2019/2020 and beyond)

The clearest trend throughout the history of DL is perhaps that of the bitter
lesson (Sutton, R. S., 2019), which states that the algorithmic advances for
better parallelization (enabling more model parameters) win over smarterPARALLELIZATION

learning techniques. As models become bigger and faster to train, tech-
niques that can make efficient use of the huge set of unlabeled data on the
web, and learn general-purpose knowledge that can transfer to other tasks,
are becoming more valuable and widely adopted (Chen, T., Kornblith, S.,
Norouzi, M., and Hinton, G., 2020).

Also, deploying deep models on devices with limited resources, e.g.,
mobile phones and embedded devices, is challenging not only because of
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the high computational complexity but also for the large storage require-
ments. To this end, a variety of model compression and acceleration tech-
niques have been developed. For example, knowledge distillation is an ap- KNOWLEDGE DISTILLATION

proach that effectively learns a small student model from a large teacher
model (Gou, J., Yu, B., Maybank, S. J., and Tao, D., 2021).

Finally, a new field of mathematical analysis has been developed around MATHEMATICAL ANALYSIS

Deep Learning (Berner, J., Grohs, P., Kutyniok, G., and Petersen, P., 2022;
Kutyniok, G., 2022). It emerged to address a series of research questions
that were not answered within the classical framework of learning theory:
the role of depth in deep architectures, the apparent absence of the curse
of dimensionality, the optimization performance despite the non-convexity
of the problem, the interpretability of the learned features, etc. As it usu-
ally happens with theorems, they are likely to spur the development of new
corollaries that will find their way into new applications, thus opening up
new avenues for DL improvement.

3.1.2 Deep System Health Management

The aim of health management is to collect relevant data from various sensor HEALTH MANAGEMENT

sources and carry out the necessary processing including the extraction of
key features, fault detection, fault diagnosis, and prognosis (Khan, S., and
Yairi, T., 2018). In a nutshell: initially, fault detection uses either signal
reconstruction error or a binary classifier on top of the network to detect
anomalies. Then, fault diagnosis typically adds a soft-max layer to perform
multi-class classification. Finally, prognosis adds a continuous regression
layer to predict the remaining useful life (Zhang, L., Lin, J., Liu, B., Zhang,
Z., Yan, X., and Wei, M., 2019).

Recent advances in detection include ensemble models using Convolu- DETECTION

tional layers (Selvanathan, B., Nistala, S. H., Runkana, V., Desai, S. J., and
Agarwal, S., 2023; da Rosa, T. G., de Andrade Melani, A. E., Kashiwagi, F.
N., de Carvalho Michalski, M. A., de Souza, G. F. M., de Oliveira Salles, G.
M., and Rigoni, E., 2022), autoencoders (Brunner, S., Frischknecht-Gruber,
C. M.-L., Reif, M., and Senn, C. W., 2022), GANs Xu, M., Baraldi, P., Lu,
X., and Zio, E. (2022), and LSTM networks (Hosseinpour, F., Ahmed, I.,
Baraldi, P., Behzad, M., Zio, E., and Lewitschnig, H., 2022; De Simone,
L., Caputo, E., Cinque, M., Galli, A., Moscato, V., Russo, S., Cesaro, G.,
Criscuolo, V., and Giannini, G., 2023). In diagnosis, a Feature Importance DIAGNOSIS

layer, which is a one-to-one link with features, indicates the relevance for
result interpretability (Barraza, J. F., Droguett, E. L., and Martins, M. R.,
2021). Finally, regarding prognosis and specifically the estimation of the PROGNOSIS

Remaining Useful Life (RUL), Convolutional layers and residual blocks are
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combined (DeVol, N., Saldana, C., and Fu, K., 2022), also with LSTM (Re-
madna, I., Terrissa, L. S., Ayad, S., and Zerhouni, N., 2021; Tamssaouet, F.,
Nguyen, K. T. P., Medjaher, K., and Orhard, M., 2021).

Based on the complexity breakdown analysis between diagnosis and
prognosis objectives, the system should be able to recommend further ac-
tions according to user requirements, i.e., the generation of the advisory
statement. This final phase plays an important role in adding resilience
to the overall solution and regulating availability during service opera-
tion (Khan, S., and Yairi, T., 2018). The key points are summarized as
follows:

• Any recommended decisions are only as good as the data that was
collected to represent the current state of the system operation.

• False alarms have been identified as a major annoyance during main-
tenance activities.

• System models and related algorithms need to be updated from time
to time in order to account for any unanticipated conditions.

• Recording and storing acquired on-field knowledge for future appli-
cation developments and improvements is useful.

3.1.3 Challenges and Opportunities

Failures are to be prevented as much as possible to maximize the avail-
ability of the assets. To accomplish this goal, some approaches focus on
designing for failures, while others put the attention on maintenance. WithMAINTENANCE

respect to the latter, PHM constitutes its paramount implementation. This
section highlights the main challenges and opportunities for applying DL to
PHM (Zhang, L., Lin, J., Liu, B., Zhang, Z., Yan, X., and Wei, M., 2019;
Rezaeianjouybari, B., and Shang, Y., 2020; Fink, O., Wang, Q., Svensén,
M., Dersin, P., Lee, W.-J., and Ducoffe, M., 2020):

Cross-domain Prediction Transfer learning aims to take advantage of the
experience learned in a source problem to improve the learning of a
target problem. However, complex systems cannot be directly trans-
ferred to a different system of the same fleet operated under different
conditions, or to a different fleet.

Data Scarcity and Augmentation DL algorithms are known to be data-
hungry, and their superior performance depends on the availability of
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abundant data, which is rarely feasible in most of the PHM situations
(failures are usually rare).

Industrial Data Characteristics The success of deep models is reliant on
the quality and variety of the collected data. However, real-world
industrial data come from various sensors and are mostly incom-
plete, imbalanced, unlabeled, unstructured, multi-modal, and hetero-
geneous.

Data Analysis Pre-processing actions range from simple normalization,
standardization, and data segmentation, to more complex tasks such
as labeling and dealing with incomplete data or outliers.

Model Selection Expert manual processes are error-prone and time-
consuming. DL depends on a wide spectrum of hyperparameters for
automation, which enlarge the search space for the optimum solution.

Interpretability and Explainability The lack of “transparency” affects
the decision-making part of the PHM cycle. Interpretability tech-
niques are roughly categorized into two categories: those that utilize a
surrogate simple model, and those that incorporate explainable mech-
anisms in intermediate layers such as attention or physics-induced
prior knowledge.

Real-Time Realization Actual industrial data come in continuous streams
and their distribution characteristics are in dynamic change over time.
PHM DL models need to cope with the concept of drift of continu-
ously evolving new data within the incremental learning settings.

Benchmarking Towards a fair comparison of the time and cost of develop-
ing solutions, there is a need to build novel metrics that incorporate
runtime performance, model accuracy, and robustness across various
architectures and DL frameworks.

3.2 Learning Techniques for Product Research

This section makes some remarks about some of the important DL tech-
niques that have found a deal of success to develop specific solutions for the
railway PHM industry: Multilayer Perceptrons, Convolutional Networks,
and Autoencoders.

While convolutions and attention are both sufficient for good perfor-
mance, neither of them are necessary. An architecture based exclusively on
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MLPs applied independently to local data, followed by more MLPs mix-
ing the formerly extracted representation performs equivalently to a full DL
architecture (Tolstikhin, I., Houlsby, N., Kolesnikov, A., Beyer, L., et al.,
2021; Melas-Kyriazi, L., 2021). As a refinement strategy, there are several
approaches that may also be considered: a structural re-parameterization
that adds a local prior into the dense layers (Ding, X., Chen, H., Zhang, X.,
Han, J., and Ding, G., 2022), gating functions (Liu, H., Dai, Z., So, D. R.,
and Le, Q. V., 2021), and residual connections (Touvron, H., Bojanowski,
P., Caron, M., et al., 2021). Such well-regularized plain MLPs significantly
outperform recent state-of-the-art specialized neural network architectures,
and they even outperform strong traditional ML methods, such as XGBoost,
which is the champion on tabular datasets (Kadra, A., Lindauer, M., Hutter,
F., and Grabocka, J., 2021). Finally, the use of the Autoencoder in PHM
highlights its capacity to detect anomalies (Goldthorpe, P., and Desmet, A.,
2018) and to construct health indices (Trilla, A., Janjua, F., and Bermejo, S.,
2019), among other specific applications to mechanical components such as
bearings, turbines, etc. (Khan, S., and Yairi, T., 2018).



CHAPTER 4

STATE OF THE ART

The best engineer I ever knew never had an original idea in his life.
All he’d do is go around and talk to people, and then...

then he’d put it all together.
– Harry West, MIT Professor (c. 1990)

SCIENCE and engineering are reciprocals. Engineering can be seen as
a special case of science (“applied science”), but science can equally

be described as a special case of engineering (“abstract engineering”). Sci-
entists are given a phenomenon and asked to find its logical and physical
relations to the rest of the universe; engineers are given the relations and
asked to define the phenomenon. Put differently, scientists derive the spec-
ifications from the object, and engineers derive the object from the specifi-
cations (Hapgood, F., 1993).

While this dissertation has traits that align with both these definitions
of science and engineering, it is clearly biased toward the applied nuance.
The main contribution of this research is in the technical progress of PHM
in the railway maintenance business. In fact, the “management” pillar of MANAGEMENT

PHM ensures that the technical innovations introduced by the diagnosis and
the prognosis pillars have a practical application in the field, otherwise they
risk becoming useless and adding no value to address specific problems. No
fancy research solution will stand a chance in the market if it is too costly to
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implement because it diminishes the return of the investment. This chapter
makes explicit the link among the former chapters of this part.

4.1 Literature Review

The state of the art has been divided in two chapters regarding the interest
of the reading audience, which is targeted to railway engineers and data
scientists.

4.1.1 Railway Engineering

Chapter 2 develops the literature review from the viewpoint of the railway
engineer, including general topics such as reliability, management, cyberse-
curity and sustainability, among others, and also focuses on their application
to product development.

The benefits of higher reliability and lower costs can only be realized
when the organizational culture adapts to make best use of the technol-
ogy (Kilian, K., Kilian, M., Mazur, V., and Phelan, J., 2016). In this sense,
managing assets and people increasingly gain importance in this context.
Reliability and Life Cycle Cost, which lie at the heart of a sustainable rail-
way operation, allow including a cost-benefit analysis into the technical con-
siderations to yield the optimal final maintenance decisions (Mascherona,
R., Bellani, L., Compare, M., Trucco, R., Zio, E., 2020). Additionally, with
the adoption of information and communications technologies in railway
maintenance, vulnerability to cyber threats has increased. Therefore, it is
essential that organizations also consider security analytics and automation
to increase their resilience against security breaches (Kour, R., Aljumaili,
M., Karim, R., and Tretten, P., 2019).

Chapter 2 also determines the main technical problems and open ques-
tions in railway engineering, and gives clear indications on the technologies
where the maintenance business is going:

• Smart sensors, to collect data from remote locations and/or from dis-
tributed machines in continuous movement, such as trains (Boyes, H.,
Hallaq, B., Cunningham, J., and Watson, T., 2018). Remote monitor-
ing equipment provides a centralized system for fleet diagnostics and
supports the shift to predictive maintenance (Smith, K., 2018).

• Machine vision inspection, to concentrate the acquisition of indirect
data parameters at the fleet level. The technology provided by ma-
chine vision software provides the tools for rail companies to re-
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think their approach to reliability engineering (Kilian, K., Kilian, M.,
Mazur, V., and Phelan, J., 2016).

• Technical language processing, to take advantage of the massive doc-
umentation and written work orders on the shop floor. Text-based re-
search and analysis are bound to have a meaningful impact on almost
every aspect of the railway sector (Dong, K., Romanov, I., McLel-
lan, C., and Esen, A. F., 2022). They provide an effective approach
for improving the collection and analysis of text-based maintenance
data, and eventually enable accurate decision-making (Brundage, M.
P., Weiss, B. A., and Pellegrino, J., 2020).

• System log analytics, to take advantage of the massive stream of time-
stamped event data that the subsystems already generate. The defi-
nition of the time intervals in which the failures are likely to occur
provides a more intuitive way to handle the predictions by the users,
and increases the acceptance of the proposed approaches (Fink, O.,
Zio, E., and Weidmann, U., 2015c).

4.1.2 Data Science

Chapter 3 adopts the viewpoint of the data scientist, and focuses on the
technical topics around Deep Learning, its challenges, and its application
on specific approaches to PHM objectives, mainly tackling detection and
diagnosis tasks (Fink, O., Wang, Q., Svensén, M., Dersin, P., Lee, W.-J.,
and Ducoffe, M., 2020).

Deep Learning (DL) has gained increasing attention and momentum due
to its advantages in data classification and feature extraction problems using
neural networks (Schmidhuber, J., 2015; LeCun, Y. and Bengio, Y., and
Hinton, G. E., 2015; Raghu, M., and Schmidt, E., 2020). It is an evolving
research area with diverse application domains. Hence, it has the potential
to increase overall system resilience or cost benefits for maintenance, repair,
and overhaul activities (Khan, S., and Yairi, T., 2018).

Chapter 3 also provides indications on the appropriate solutions for
product research, emphasizing the usefulness of:

• Multilayer Perceptrons (MLP), as the fundamental building block of
neural solutions, exploiting their flexible ability to learn and approxi-
mate functions.

• Convolutional Neural Networks (CNN), as the main tool from Deep
Learning to deal with signal-like data, and their ability to interpret
their operation as filters.
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• Autoencoders (AE), as an essential solution for tackling unknown en-
vironments through an unsupervised approach.

4.2 Railway Data Operations

Reviewing the potential impacts of the AI technology in the railway main-
tenance industry (Burroughs, D., 2019c) and business in general (Glover,
J., 2013), Table 4.1 charts the operational utilization of railway engineering
and data science in the context of railway PHM.

Potential Impact Railway Engineering Data Science

Increased capacity Reliability, Management MLP
Reduced life cycle costs Sustainability MLP
Reduced errors from both
humans and existing com-
puter systems

Reliability, Cybersecurity AE

Improved efficiency and
increased performance

Reliability, Management MLP

High-level automation
and autoadaptive systems

Automation, Big Data MLP

Simplified supervision
and fast problem resolu-
tion

Automation CNN

Improved flexibility Reliability, Management MLP

Table 4.1 Potential impacts of the AI technology in the railway maintenance indus-
try and business in general.

Table 4.1 shows how the topic of Reliability is intimately linked to Man-
agement to address the potential impacts of the increase of capacity and
flexibility, regarding the area of Railway Engineering. Similarly, the topic
of Automation closely follows to effectively tackle the troubleshooting of
errors. Regarding the specific techniques from Data Science, which are not
mutually exclusive, the Multilayer Perceptron leads the implementation of
solutions for its versatile learning flexibility.

Finally, there is a tight association between the maintenance business
activity and the technology that supports the development of the predictive
solutions. In this sense, causality works in the two directions: the solutions
are affected by the viability of the technology that is available in the market,
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and likewise the business is driven by the feasibility of the solutions. Fig-
ure 4.1 shows a map of how the assets that lead the development of solutions
due to their high return on investment, relate to the specific technologies that
are used to develop the added-value predictive maintenance products.

Smart
Sensors

Machine Vision
Inspection

Technical Language
ProcessingSystem Log

Analytics

Wheelset

Brakes

Bearings

Pantograph

Figure 4.1 Map of railway assets that appeal to business (in circles) and their re-
lated predictive maintenance technologies (in squares).

The graphical map of Figure 4.1 shows how specific solutions like the
Smart Sensors, which typically operate at the bogie level, i.e., wheelsets
and bearings, compare with solutions that feature a broader scope, such as
Machine Vision and Log Analytics, which cover the whole energy usage
cycle, from its collection (pantograph), exploitation (motor wheelsets for
traction), and recovery (regenerative brakes). Finally, the diagram shows
how language is regarded to be an adequate medium to tackle the whole train
vehicle in a transversal way, potentially taking advantage of wider inter-
asset relationships, for example, grasping the extent to which bearings can
affect the wheelsets, which in turn may also affect the brakes.

4.3 Applied Research Questions

The generic research question stated in Section 1.2 focuses on building a
convincing case for applying DL to the many PHM challenges in the main-
tenance of railways: Deep Learning displays the characteristics that make it
a suitable technology for developing dependable industrial-grade solutions
for effectively maintaining rolling stock with confidence.
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The next part of the dissertation details the published work introduced
in Section 1.4. The salient aspect of the research is in the diversity of the
data environments (structured and unstructured) where different DL tech-
niques have been applied with success to solve specific problems and add
value to the maintenance business. These distinct scenarios comprise real-
valued time-series data (e.g., pantograph carbon strip degradation), real-
valued signals (e.g., axlebox mechanical vibration), images (e.g., wheel
tread pictures), text (e.g., Return On Experience records), and subsystem
events (e.g., blended traction and brake), which have been transformed into
time-dependent binary-valued variables. Additionally, the different tasks
that have been tackled also support the versatility of DL for PHM. These
include the diagnosis of bogies and various subsystems in a broader sense,
and the prognosis of pantographs and wheelsets.

What follows is a specific overview of the published work regarding the
research question, the state of the art, and how each article contributes to the
technical progress of railway PHM.

Enhancing Railway Pantograph Carbon Strip Prognostics with Data
Blending through a Time-Delay Neural Network Ensemble

Section 5.1 develops an efficient and robust prognosis solution for
the pantograph as a critical railway asset for energy collection, see Sec-
tion 2.1.10, using a machine vision inspection product to monitor the car-
bon strip thickness degradation, see Section 2.2.2, and based on a Multilayer
Perceptron for its flexibility, see Section 3.1.1. The research question that
is investigated can be stated as follows: smartly integrating the unevenly
sampled thickness evolution of the carbon strips with external factors that
may have an impact on their degradation, such as the seasonal condition of
the overhead contact wire, results in more accurate and reliable prognosis.
The developed solution can be easily generalized to other friction-driven
mechanisms on assets such as the brakes and the wheels, which amount to a
big computational load (around 15000 parameter calculations per day at the
fleet level).

Pushing Distributed Vibration Analysis to the Edge with a Low-
Resolution Companding Autoencoder: Industrial IoT for PHM

Section 5.2 develops a vibration data compression method for the di-
agnosis of railway axle bearings, see Section 2.1.9, using smart sensors to
monitor the mechanical degradation of these bogie components, see Sec-
tion 2.2.1, and based on a regularized Autoencoder with an undercomplete
representation, see Section 3.1.1. The research question that is investigated
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can be stated as follows: custom data compression methods are key to en-
able the remote monitoring and diagnosis of asset condition using devices
with a limited data transmission bandwidth. Finally, the learned representa-
tion (i.e., the embedding of the Autoencoder) may also be generalized as an
encryption method of the data for cybersecurity purposes, see Section 2.1.5.

Integrated Multiple-Defect Detection and Evaluation of Rail Wheel
Tread Images using Convolutional Neural Networks

Section 5.3 develops an automatic Deep Learning method to jointly de-
tect and diagnose wheel tread defect images, see Section 2.1.7, using smart-
phone pictures as a machine vision inspection method, see Section 2.2.2,
and based on Convolutional Neural Networks, see Section 3.1.1. The re-
search question that is investigated can be stated as follows: Convolutional
Neural Networks lie at the heart of neural solutions and they are able to
tackle different tasks and implement the expert troubleshooting process
from engineering teams. Since CNN can seamlessly deal with classification
and regression objectives from the same filter-interpretable representation,
their operation can be easily generalized to tackle any challenge.

Towards Learning Causal Representations of Technical Word Embed-
dings for Smart Troubleshooting

Section 5.4 develops a causal text embedding strategy through a neural
encoder, see Section 3.1.1, using a technical language processing solution,
see Section 2.2.3, which models the textual entailment of Return On Ex-
perience data for bogie diagnosis, see Section 2.1.7. The research question
that is investigated can be stated as follows: the useful root cause analysis
troubleshooting information is to be found in the entailment of the text, and
word embeddings are a feasible solution to extract it. This approach can be
used as a building block of more general tasks involving language, such as
(causal) reasoning.

Unsupervised Probabilistic Anomaly Detection over Nominal Subsys-
tem Events on a Hierarchical Variational Autoencoder

Section 5.5 develops a method to discover and diagnose anomalies in
massive operational data, see Section 2.1.4, using system log analytics, see
Section 2.2.4, for subsystem event signals, and through a Variational Au-
toencoder, see Section 3.1.1. The research question that is investigated can
be stated as follows: Variational Autoencoders enable learning many useful
hierarchical representations to delect anomalies in data-scarce environments
such as the ones typically found in PHM. Additionally, its results yield in-
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teresting generalization opportunities for designing Intrusion Detection Sys-
tems in the context of cybersecurity, see Section 2.1.5.



PART II

CONTRIBUTIONS





CHAPTER 5

RESEARCH PUBLICATIONS

Any researcher who says that the hottest idea is not what he’s working on
has got to be stupid. If you think it’s the hottest new idea, then why aren’t

you working on it?
– Geoffrey E. Hinton (1997)

THIS chapter provides the research contributions that have been pub-
lished during the progress of this doctoral period (2020–2023), see

Section 1.4. From the standpoint of the data characteristics, they comprise
signal processing (i.e., vibration), time-series of both parametric and nom-
inal variables (i.e., carbon thickness and subsystem events), images (i.e.,
shop floor pictures), and text (i.e., Return on Experience records). Finally,
from the standpoint of applications, the big three objectives of PHM are rep-
resented: anomaly detection (i.e., axle box and control network), diagnosis
(i.e., wheelset defects and technical-language driven troubleshooting), and
prognosis (i.e., pantograph carbon strip wear).
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5.1 Conference Paper 1 (2020)

Enhancing Railway Pantograph Carbon Strip Prog-
nostics with Data Blending through a Time-Delay
Neural Network Ensemble

This contribution develops a robust prognosis solution for the panto-
graph based on Multilayer Perceptron, which integrates the thickness of the
carbon strips and external factors that may have an impact on their degrada-
tion such as the seasonal condition of the overhead contact wire.

This paper was presented on November 2020 at the 12th Annual Con-
ference of the Prognostics and Health Management Society, which was held
remotely due to Covid-19 travel restrictions (Trilla, A., Fernández, V., and
Cabré, X., 2020).
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Enhancing Railway Pantograph Carbon Strip Prognostics with Data
Blending through a Time-Delay Neural Network Ensemble

Alexandre Trilla1, Verónica Fernández2, and Xavier Cabré3

1,2,3 Alstom R&D Services, Santa Perpètua de la Mogoda, Barcelona, 08130, Spain
alexandre.trilla@alstomgroup.com

veronica.fernandez@alstomgroup.com
francesc-xavier.cabre@alstomgroup.com

ABSTRACT

Energy supply for high-speed trains is mainly attained with
a high-voltage catenary (i.e., the source on the infrastructure)
in contact with a sliding pantograph (i.e., the drain on the
rolling-stock vehicle). The friction between these two ele-
ments is minimised with a carbon strip that the pantograph
equips. In addition to erosion, this carbon strip is also subject
to abrasion due to the high current that flows from the cate-
nary to the train. Therefore, it is of utmost importance to keep
the degradation of the carbon material under control to guar-
antee the reliability of the railway service. To attain this goal,
this article explores an accurate (i.e., uncertainty bounded)
predictive method based on a robust online non-linear mul-
tivariate regression technique, considering some factors that
may have an impact on the degradation on the carbon strip,
such as the seasonal condition of the contact wire, which may
develop an especially critical ice build-up in the winter. The
proposed approach uses a neural ensemble to integrate all
these sources of potential utility with the carbon strip data,
which is convoluted in time with a set of spreading filters to
increase the overall robustness. Finally, the article evaluates
the effectiveness of this prognosis approach with a dataset of
pantograph carbon thickness measurements over a year at the
fleet level. The results of the analysis prove that it is definitely
possible to deploy a fine prediction, and thus yield a new av-
enue for business improvement through the application of the
predictive maintenance approach to pantograph carbon strips.

1. INTRODUCTION

The railway environment in general, and the maintenance
of rolling-stock in particular, are recently experiencing great
benefits with the deployment of data-driven Prognostics and
Health Management (PHM) technology (Atamuradov, V.,
Medjaher, K., Dersin, P., Lamoureux, B., and Zerhouni, N.,

Alexandre Trilla et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

Figure 1. Alstom TrainScanner deployment at the Manch-
ester Traincare Centre.

2017; Tsui, K. L., Chen, N., Zhou, Q., Hai, Y., and Wang,
W., 2015). In line with this source of innovation, Alstom
has developed the TrainScanner, which is a track-side train
monitoring system that is aimed at optimising the mainte-
nance of brake pads (Trilla, A., Dersin, P., and Cabré, X.,
2018), pantograph carbon strips, and wheelsets (Trilla, A.,
and Cabré, X., 2018), see Figure 1. This product is based on a
set of computer vision technologies with lasers and 3D cam-
eras that capture the degradation-related measures for each
component as the trains traverse its portal. Then, it automat-
ically triggers the analysis of the collected data, and advises
the maintenance team with data-informed prescriptions. This
work is particularly focused on the pantograph prognostic en-
hancement that may be attained with the carbon strip thick-
ness measurements over time.

The British Rail Class 390 rolling stock is an electric high-
speed passenger train that conducts the current collection
through a pantograph. Therefore, the pantograph is an es-
sential element of the traction chain because it provides ac-
cess to the power to drive the traction motors, among other

1
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Figure 2. British Rail Class 390 pantograph showing the two
carbon strips. One of them leads the contact with the catenary.

systems. In order to draw the current while the train is in
motion, the pantograph equips two carbon strips that are in
constant sliding contact with the overhead line, also known
as the catenary, see Figure 2. Given the permanent friction
regime of this means of power transfer, each carbon strip is
subject to wear. And in addition to this main degradation
mode, there are many other factors that may impact the con-
dition of this asset, such as the amount of current flow (Bucca,
G., and Collina, A., 2015; Ding, T., Xuan, W., He, Q., Wu,
H., and Xiong, W., 2014), the irregular contact height relative
to the rails (Shing, A. W. C., and Wong, P. P. L., 2008), the
specific carbon material (Auditeau, G., Bucca, G., Collina,
A., and Tanzi, E., 2011; Auditeau, G., 2016), and the ambient
temperature (Ocoleanu, C. F., Popa, I., Manolea, G., Dolan,
A. I., and Vlase, S., 2009). The combined effect of all these
phenomena may produce chips and cracks on the surface of
the carbon strip, although the most critical degradation factor
that can be directly observed is the season.

This work conducts a thorough analysis of the pantograph
carbon strip degradation at the fleet level in order to en-
hance the performance of its thickness prediction at 30,000
km into the actual operating life of each asset, which is ex-
pected to show a great deal of variation according to the sea-
sonal weather. Given the intense mission profile of the fleet,
this horizon for the prediction is assumed to provide enough
notice time for the maintenance team to schedule the depot
resources effectively. The proposed model of the degrading
carbon thickness sequence exploits its diversity in time (or
distance) through a set of spreading convolutions. Finally,
the prognosis evaluation is performed with a rolling window
prediction technique, focusing on the uncertainty of the pre-
dicted error, which is given by the maximum variability of the
error distribution for a given confidence interval.

The article is organised as follows: Section 2 describes the
analysis procedure that has been explored, including the de-
scription of the data, the evaluation technique, and the prog-
nosis enhancements, along with their preliminary results.
Section 3 discusses the overall outcomes and the limitations
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Figure 3. Acquired pantograph carbon strip profile. Note that
the figure is not to scale: the carbon strip is a very wide asset.

of the approach, and Section 4 concludes the manuscript and
reflects on its impact on the current maintenance plan.

2. METHODS AND RESULTS

This section describes process that has been followed in order
to obtain a robust pantograph carbon strip prognosis method.
Thus, the development is incremental and preliminary results
are provided.

2.1. Carbon Strip Data Preprocessing

The carbon strip is a rectangular piece of carbon material that
is mounted at the top of the pantograph. It is 20 mm thick, 30
mm wide and 1,000 mm long. Each pantograph equips two of
these strips, and the leader always precedes the contact with
the overhead line. Additionally, there are two cars on each
train that equip a pantograph, although only one of them is
active at a time (i.e., in contact with the catenary). Its rated
operating voltage is 25kV AC.

The TrainScanner acquires a cloud of points for each panto-
graph carbon strip. Based on this data, the carbons are re-
constructed with a triangulation technique, and a thickness
profile is extracted for each asset, see Figure 3. It can be ob-
served that the degraded area spans from 200 mm to 800 mm,
and the most critical part is at the centre, from 400 mm to 600
mm. The system automatically identifies this region and ex-
tracts the minimum thickness value for further wear analysis.

This article evaluates the effectiveness of carbon strip prog-
nostics with a dataset of thickness measurements at the fleet
level, acquired between June 1 2016 and June 1 2017 at irreg-
ular intervals (the monitoring operations are not scheduled).
It comprises an amount of 224 strip elements, and each se-
quence of carbon thickness needs to be preprocessed to add
robustness to the prediction. To this end, the following issues
are taken into account:

1. Asset replacement: steep positive thickness increments
(greater than 5 mm) with a final value close to a new asset

2
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measure, i.e., 20 mm, need to be segmented and treated
as different assets.

2. Acquisition failures: extreme values out of strip range
(over 20 mm) or zeroes are regarded as invalid data and
thus they need to be discarded from the analysis by re-
moving them from the carbon thickness sequence.

3. Stability/Monotonicity: each thickness segment needs
to be asserted an overall monotonic negative trend ac-
cording to the nature of the carbon material erosion, and
a monotonic positive progression regarding the accumu-
lated mileage. To this end, a monotonicity index is use-
ful to quantify the amount of regularity in the evolution,
which is based on the difference between the number of
positive and negative increments (Davydov, Y., and Zi-
tikis, R., 2017).

4. Sensor precision: TrainScanner’s rated measurement
precision is 0.5 mm. The prediction method needs to be
robust to this inherent data acquisition system variability.

The resulting set of data should be smooth enough to be
subject to further analysis following the ISO 13374 stan-
dard (ISO, 2003), which is the main PHM development
guideline considered in this work, although similar structured
approaches have also been developed for overhead monitor-
ing systems (Brahimi, M., Medjaher, K., Leouatni, M., and
Zerhouni, N., 2016). Obviously, the primary interest here is
focused on the Prognosis module and the dynamic properties
of the carbon strip degradation.

2.2. Rolling Window Prediction Evaluation

A rolling window is a prediction performance estimation pro-
cedure that is essentially based on the idea that “the past is
used to predict the future”. It is an iterative process that
frames a history window at some point in the evolution, learns
the trend from it in order to make a prediction over a given
horizon frame, and finally scores the error difference with the
remaining coming data (Hota, H. S., Handa, R., and Shrivas,
A. K., 2007), see Figure 4.

Ultimately, the distribution of the resulting error score is used
to estimate the performance of the prediction method, which
is mainly driven by the amount of variability (Trilla, A., Der-
sin, P., and Cabré, X., 2018). To this end, the maximum de-
viation of the error distribution around its mean value is de-
termined for a confidence interval of 95%. This quantity is
here referred to as the “uncertainty”. Obviously, the error in-
creases as the prediction horizon is extended into the future.

2.3. Robust Online Linear Regression

The Class 390 tilting Pendolino trains run a steady mission
profile on the West Coast Main Line in the UK, featuring a
very high availability (running 1,000 miles a day on average),
which leads to expect a uniform degradation behaviour. In
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Figure 4. Diagram of the rolling window prediction evalua-
tion for carbon strip data.
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Figure 5. Histogram of the prediction error with robust on-
line linear regression (ROLR). The 95% confidence interval
indicates the uncertainty.

order to get a baseline for this study, the model linearity is as-
sumed for the carbon strips in this high-speed rail scenario,
following other carbon-based degradations like the brake
pads (Trilla, A., Dersin, P., and Cabré, X., 2018). There-
fore, a robust ordinary linear regression approach (ROLR)
based on weighted least-squares fitting is evaluated. The re-
gression is applied to each window of carbon thickness his-
tory after the aforementioned robust data-weighting process,
and the prediction is obtained by extrapolating the evolution
over the horizon frame. It is to note that the squared-error
cost function of use here is very convenient to deal with the
data-acquisition precision instability, which may be positive
or negative. Finally, given the limited amount of data that is
available at the sequence level, the history window is set to
be equal to the prediction horizon, i.e., 30,000 km. Figure 5
shows the resulting distribution of this prediction error.

It can be seen that the linear method for the baseline shows an
uncertainty of 2.89 mm. However, the resulting distribution
shape is asymmetric because it displays a skewed centrality,
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instead of the normal Gaussian distribution that would be ex-
pected with the least-squares optimisation procedure of use.
This might be indicative that the linear assumption is not ad-
equate and perhaps it needs to the questioned. The following
sections, though, first delve into the particular bits of infor-
mation that may be obtained from external context variables,
and how they may be used to enhance the prediction.

2.4. Potential Improvement with Seasonal Context

One of the main extrinsic factors that may affect the degra-
dation of the pantograph is the season. Variations of temper-
ature (Ocoleanu, C. F., Popa, I., Manolea, G., Dolan, A. I.,
and Vlase, S., 2009), humidity, rain, wind... may cause an
unsteady wear on the surface of the carbon material of the
strip. It is well known that in the winter the contact wire
freezes with the icing temperatures, possibly causing abnor-
mal degradation. The spring, instead, is the driest period (al-
though the rain is fairly well distributed throughout the year
in the UK).

Further insight into these issues may be displayed through
the seasonal wear rates, which grossly indicate the dynamic
behaviour of the carbon degradation (i.e., the pace of the de-
terioration) due to these factors. In order to capture this in-
dicator, the slope parameter of the linear regression on the
strip thickness sequence is taken. Figure 6 shows the distri-
bution of wear rates throughout the year using a Gaussian ker-
nel density estimation procedure. It is to note that the winter
and spring seasons are located on the extremes of the over-
all multimodal density. Winter shows the highest rates (over
12·10−5 mm/km), whereas spring shows the lowest rates (un-
der 5 ·10−5 mm/km). Given that the prediction method of use
here is linear (this may be interpreted as the derivative of the
wear function), the extremely different error values related to
these two sequential seasons prove that a non-linearity is in-
herently present as seasons gradually change. Therefore, this
justifies the specific consideration of the seasonal factor as
discrete context variables corresponding to the three modes of
wear rate: winter, spring, and summer/autumn (note that their
centrality conflates into the same value). The representation
of the season as a nominal one-hot encoded vector (instead of
a scalar ordinal encoding) is a convenient and effective solu-
tion with neural networks (Hancock, J. T., and Khoshgoftaar,
T. M., 2020), the use of which is explored further in the fol-
lowing sections.

2.5. Data Blending through Neural Networks

In order to take advantage of the seasonal non-linear con-
text variables discussed in Section 2.4, this section explores
blending these different sources of information with a neural
network ensemble. Regardless of the difficulty of the predic-
tion task, the neural technique unifies the way of approaching
this problem.
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Figure 6. Density distribution of the wear rates according to
season throughout the year.

2.5.1. Feature Ensemble with a Multilayer Perceptron

The Multilayer Perceptron is a general-purpose neural net-
work architecture that can seamlessly integrate extrinsic data
from different sources in order to refine a prediction (Trilla,
A., Dersin, P., and Cabré, X., 2018). It is based on a feed-
forward structure with a hidden layer in the middle, which
provides the capacity to learn non-linear relationships be-
tween the inputs (i.e., the present features) and the output
(i.e., the future thickness value). Moreover, its industrialisa-
tion is straightforward through a series of matrix multiplica-
tions that any platform can efficiently implement with a stan-
dard linear algebra library.

For the pantograph carbon strip scenario presented in this
work, the baseline prediction result with linear regression is
provided as a real-valued feature along with the rest of the
aforementioned seasonal context variables (as binary flags
with one-hot encoding). Moreover, the strip thickness value
within the 30,000 km horizon is provided as the supervised
output target prediction, see Figure 7. The hidden neurons
are designed with a Rectified Linear Unit activation function
to learn the non-linearities (Nair, V., and Hinton, G. E., 2010).
The neural network is ultimately trained with a stochastic
gradient descent protocol using backpropagation, an adaptive
learning rate with momentum (Kingma, D. P., and Ba, J. L.,
2015), and considering a squared-error cost function.

In order to get the network to learn effectively, its expres-
siveness (i.e., the capacity to represent the learnt knowledge)
needs to match the complexity of the data within the objec-
tive prediction problem. To do so, the number of hidden units
H needs to be adjusted because they modulate this learn-
ing ability. Note that the input dimensionality of this net-
work is 4 (i.e., 3 context variables plus the result of the lin-
ear prediction), therefore, every hidden unit adds 6 new pa-
rameters to the model (4 inputs, 1 output, and 1 bias). In
order to determine the optimum size of the hidden layer so
that underfitting and overfitting learning problems may be
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Figure 7. Multilayer Perceptron architecture blending the Ro-
bust Online Linear Regression (ROLR) with the set of three
seasonal context variables to obtain a better refined predic-
tion.
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avoided, a range of values are evaluated with Monte Carlo
cross-validation (Dubitzky, W., Granzow, M., and Berrar, D.,
2007), applying 10 rounds of repeated random sub-sampling
with a train/test split of 95%/5%. This procedure yields over
70 evaluation points, which is a sufficient sample size to reli-
ably estimate the prediction uncertainty. Figure 8 shows the
results of this study through a bias/variance tradeoff analy-
sis using the mode and the uncertainty values of the expected
skewed error distributions, following customary descriptive
statistics tools.

It can be seen that the most interesting performance score
(i.e., the variance, or uncertainty) shows a randomly decreas-
ing evolution as the expressiveness of the network grows (i.e.,
H increases), until the amount of hidden neurons reaches 9.
From that point forward, the uncertainty rises, so the network
stops generalising and begins to memorise the data, which is
a sign of overfitting. Therefore, the optimum size for the hid-
den layer is of 9 units (it is to note that any residual bias can be
corrected a posteriori with this estimation). It can be seen that
the resulting system outperforms the previous linear approach
as it now shows an uncertainty of 1.59 mm. This improve-
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Figure 9. Impulse response of the spreading filtersG(s) (with
α = 10) for the time-delay convolution.

ment is mainly due to modelling the inherent non-linearities
in the extrinsic seasonal context variables. Nevertheless, this
result is still driven by the assumed linear evolution of the
carbon thickness, which is a clear point of improvement that
is explored in the next section.

2.5.2. Time-Delay Neural Network Embedding

This section builds upon the former feature ensemble ap-
proach, drops the questionable linearity assumption that
drives the baseline prediction from Section 2.3, and pro-
poses integrating the carbon thickness data directly through
a neural structure known as a Time-Delay Neural Network
(TDNN) (Peddinti, V., Povey, D., and Khudanpur, S., 2015).
This approach maps the decreasing dynamic evolution of the
data into a fixed spatial pattern using a weighted average op-
eration in time with a set of spreading filters G(s) defined
by Eq. (1), where L is the size of the delay line (input data
buffer), α is the spreading factor, and s is the spatial shift.
Note that S is a normalisation factor that ensures that all shifts
may deliver the same amount of energy, see Figure 9.

Gs = G(s) =
1

S

L∑

n=0

x[n]

(
n+ 1

s+ 1

)α
exp

(
−α n

s+ 1

)

(1)

In addition to empowering the system to deal with the thick-
ness data evolution directly (i.e., an autoassociation that does
not assume any specific behaviour, like the linearity), the con-
volution with the spreading filters exploits the local features
of the data and reduces the searchable weight space for the
learning stage. Furthermore, it increases the robustness to
uneven sampling, which is to be taken into account as the in-
spections through the TrainScanner are not scheduled. This,
in turn, enables the neural network that follows to handle se-
quences with different lengths, which is a clear limitation of
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the ordinary multilayer perceptron (where the input dimen-
sionality is fixed). Also, the use of variable history lengths
may be of help to reduce the high uncertainty of strips show-
ing a faster wear rate (Trilla, A., Dersin, P., and Cabré, X.,
2018; Greitzer, F. L., and Ferryman, T. A., 2001).

The enhanced solution that this work suggests first builds the
time-series embedding by applying the filters over the thick-
ness sequence to obtain three spatial shifts (i.e., the high, mid-
dle, and low parts of the evolution). It uses the spreading
factor α as a modulator to adjust the bandwidth of the filters
to the length of any given sequence (applying the first filter
G(0) to the newest thickness sample to deal with a most un-
weighted value close to the prediction result), see Figure 9.
And then, it assembles the resulting physical features with
the former set of seasonal context variables that have proven
to be useful in this modelling approach. Figure 10 shows this
architecture.

At this point, the expressiveness of the new multilayer per-
ceptron needs to be adjusted to the new embedded features
following the cross-validation procedure described in Sec-
tion 2.5.1. Now, each hidden unit adds 8 new parameters to
the model. Figure 11 shows the result of this expressiveness
analysis, which indicates that with 6 hidden neurons, the un-
certainty of the prediction drops to 1.39 mm. Note that for
this richer input representation (6 variables instead of 4), the
model has become somewhat simpler (6 hidden units instead
of 9), which makes perfect sense regarding the complexity
tradeoff between the features and the predictive learning ca-
pacity.

3. DISCUSSION

This work exposes the gradual performance enhancement of
pantograph carbon strip prognosis, initially relying on linear
regression (resulting in 2.89 mm of uncertainty), then refining
this prediction by accounting for non-linearities through the
seasonal context information (1.59 mm), and finally dealing
with the thickness evolution data directly with a set of spread-
ing filters (1.39 mm). What is more, if these error results are
assumed to belong to a normally distributed random variable,
their incremental differences are statistically significant with
a confidence interval of 95% using an Independent Samples
t-test. In this case, the powerful Student hypothesis test with
the Gaussian normality assumption is preferred over weaker
non-parametric approaches like the Mann-Whitney U test, in
spite of its apparent appropriateness to compare skewed dis-
tributions.

Despite the nice interpretability of the initial linear behaviour
that emulates the prominent uniform physical degradation of
this asset, every step taken toward dropping this linear as-
sumption has led to increasingly better results in terms of pre-
diction uncertainty. However, the resulting neural model has
also increased its complexity, thus becoming more difficult to

interpret. Neural networks are typically regarded as “black
boxes” because of their intricate nested inner functions.

In order to shed some light into the internal behaviour of the
best-performing TDNN ensemble model, Figure 12 shows
an input-standardised sensitivity analysis based on the pro-
file method (Shojaeefard, M. H., Akbari, M. Tahani, M., and
Farhani, F., 2013). It can be seen that there are three corre-
lated patterns of behaviour:

• The three physical features (low, middle, and high-parts
of the thickness sequence) show a rather linear increas-
ing pattern along 8 mm of the whole output dynamic
range. Their likelihood can be explained by their com-
mon source of information (i.e., the carbon evolution),
which is already expected to be linearly uniform.

• The winter and spring seasons show a convex function
(first negative, and then positive), with the inflection
point around 0.5σ, and also covering 8 mm of the out-
put dynamic range. These two seasons display the most
extreme wear rates, see Figure 6, and the neural network
seems to use them in a similar way for the refined pre-
dictions. In the end, it’s in the transition from winter to
spring that the main nonlinearity occurs.

• The summer/autumn seasonal variable exhibits a kind of
offset rectifier function with the inflection point located
at −0.5σ. This variable stretches up to 12 mm of the
output dynamic range. It is to note that the associated
wear rate applies to six months and it is represented by
one single variable, thus maybe this explains its extended
range.

While it may be difficult to assess the contribution of each
variable in terms of importance, the amount of dynamic range
in the output may be indicative of their rank, leaving the sum-
mer/autumn flag as the most critical variable. Further testing
with an ablation study would be needed to derive stronger
statements.

The current approach conducts a rough discretisation of the
seasonal factor with three mutually-exclusive binary vari-
ables, but seasons change gradually, and the mid-season
nuances are possibly missed with this solution. Neverthe-
less, conducting a seasonal information blending, e.g., at the
month level, increases the number of extrinsic variables from
three to twelve, and this in turn may enlarge the amount of
weights in the neural network to an excess of expressiveness,
increasing the potential risk of overfitting the data.

In addition to the principal seasonal information, other ex-
ternal sources of potential prognosable input have also been
informally studied. On the one hand, there is the particular
location of the pantograph. Each Class 390 train equips two
pantographs, and the decision of using one or the other de-
pends on the driver. This arbitrary factor may affect the degra-
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dation of the carbon strips, although particular behaviours
seem unlikely to be displayed because driver rota is the com-
mon way of operating the rolling stock.

On the other hand, there is the position of the carbon strip
in the pantograph. Depending on the sense of the trip (up-
wards to Scotland, or downwards to England), different strips
lead the contact with the catenary. But again, it’s the driver’s
decision to use one pantograph or the other, so for the same
rotation reason, a singular behaviour is unlikely to show. In
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Figure 12. Sensitivity analysis of the best-performing TDNN
ensemble (H=6). The dynamic range of the inputs is nor-
malised to their standard deviation. The variables that display
the same pattern share the same line style.

the end, neither the pantograph location not the strip position
have proven to be of much use in the prognostication of future
carbon strip thickness.

4. CONCLUSION

At present, the carbon strip replacement criterion for the
Class 390 pantographs is based on a single thickness thresh-
old value. This inefficient approach does not take into account
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the rate of wear that the different strips display, which varies
significantly throughout the year with the seasons. Thus, the
same thickness value can lead to different operating mileages
before the asset reaches its actual end of life (i.e., when there
is no carbon material left on the strip).

This article presents the most sophisticated technique for
TrainScanner pantograph carbon strip prognostics, which is
based on a Time-Delay Neural Network that blends a spread
sequence of carbon thickness values with the seasonal context
information. This approach yields a prediction error uncer-
tainty around 1.39 mm at the asset level and for a projected
horizon of 30,000 km, which is related to the planning time
that is necessary for scheduling the maintenance resources at
the depot. Therefore, if the expected mileage to the next visit
is under this distance frame, the strip threshold scrap limit
could be safely extended up to this performance value.

The future work that is currently envisaged may further deal
with other extrinsic context variables in order to add more ro-
bustness to the prognosis method. The neural network has
proven to be a very versatile approach for assembling dif-
ferent data sources. In this regard, we may exploit the tem-
poral persistence of large amounts of other nominal (i.e.,
non-parametric) data provided by related onboard subsys-
tems (Hu, X., Eklund, N., and Goebel, K., 2007), e.g., from
traction. Alternatively, we also expect to explore other se-
quence learning approaches through the Long Short-Term
Memory units (Hochreiter, S., and Schmidhuber, J., 1997),
and seek the complementary characteristics that may help the
current approach attain a better effectiveness.
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Pushing Distributed Vibration Analysis to the Edge
with a Low-Resolution Companding Autoencoder:
Industrial IoT for PHM

This contribution develops a vibration data compression method for the
diagnosis of railway axle bearings using a regularized Autoencoder with
an undercomplete representation. Additionally, the embedding of the Au-
toencoder may be regarded as an encrypted representation of the data for
cybersecurity purposes.

This paper was presented on November 2020 at the 12th Annual Con-
ference of the Prognostics and Health Management Society, which was held
remotely due to Covid-19 travel restrictions (Trilla, A., Miralles, D., and
Fernández, V., 2020).
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ABSTRACT

The Industrial Internet-of-Things (IIoT) has disrupted the
way of collecting physical data for predictive maintenance
purposes. At present, networks of intelligent wireless sen-
sors are pervasive, finding success in many environments and
industries, including the railways. However, when it comes
to data-intensive applications like vibration monitoring that
require the delivery of large amounts of records, the limita-
tions of these devices arise. The shortfalls are mainly driven
by the low-bandwidth transmission capacity of their radio in-
terfaces, and the low-power features of their battery-operated
(and/or energy-harvested) electronics. In sight of these lim-
ited resources, this article explores a vibration data compres-
sion strategy for diagnosis purposes. To maximise the amount
of transferred information with the least amount of bytes this
method works in three stages: first, it extracts the most useful
features for vibration-based analytics. Then, it compresses
the raw signal waveform using an Autoencoder neural net-
work with an undercomplete representation, assessing its op-
timum regularisation approach: the denoising, sparse, and
contractive configurations. Finally, it reduces the resolution
of the compressed data by quantising all the resulting real
values into single-byte unsigned integers. The proposed strat-
egy is evaluated with a dataset of railway axle bearings with
different levels of degradation. The results of the analysis
show that with compression rates up to 10 the vibration sig-
nals are practically unaffected by this procedure, and once the
signals are reconstructed with a minimum quality standard,
many diagnosis goals like anomaly detection, fault location,
and severity appraisal can be performed. This approach yields
a wide range of business opportunities for on-board predictive
maintenance with IIoT technology.

Alexandre Trilla et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

1. INTRODUCTION

The Industrial Internet-of-Things (IIoT) has emerged as one
of the leading technologies to deploy the remote condition
monitoring of machines (Boyes, H., Hallaq, B., Cunningham,
J., and Watson, T., 2018), especially when such machines
are transportation assets that move around the territory. This
work is particularly concerned with the application of Prog-
nostics and Health Management (PHM) to the maintenance
of mechanical rolling-stock components (Atamuradov, V.,
Medjaher, K., Dersin, P., Lamoureux, B., and Zerhouni, N.,
2017), specifically those able to be inspected with vibration-
monitoring technology. In this regard, Alstom has developed
The Motes (Trilla, A., and Gratacòs, P., 2016, 2013), which
is a network of intelligent wireless sensors that capture the
vibration signature of such mechanical elements and provide
feedback about their actual degradation stage, see Figure 1.
These sensors have been designed to acquire vibration in dif-
ferent operational regimes, both on the workshop floor (low-
speed environment) and in commercial service (up to high-
speed rail). Ultimately, the fleet management team can take
advantage of their added-value and make better informed de-
cisions on how to schedule the various maintenance actions
with the available resources. In this setting, one of their main
objective components are the axle bearings, also known as
axleboxes.

The axlebox is a heavy-duty safety-critical railway ele-
ment (Tsui, K. L., Chen, N., Zhou, Q., Hai, Y., and Wang,
W., 2015). It bears the weight of the train, minimises the
friction with the rotating axle, and its failure in service might
cause derailment. Therefore, its maintenance is of utmost im-
portance to guarantee the availability of the fleet. To this end,
in a predictive maintenance scenario, the collected vibration
signature must be reliable and truly representative of the ac-
tual degradation of the asset. However, this often comes at
the cost of transmitting a greater amount of data, i.e., its raw
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Figure 1. The Motes in use with an axlebox at the Morden
depot in London for the Northern Line underground. The
small window at the bottom-left corner also shows a tablet,
which is used to manage the network of sensors.

signal waveform. Relaying big loads of data works against
the business-case for the IIoT, especially for remote battery-
powered devices, which are designed with wide-range but
low-bandwidth and low-energy radio interfaces, and are ex-
pected to operate intermittently to last a long time unattended.
In addition, the activity of the sensors must not delay the lim-
ited time of the maintenance staff during their inspection ac-
tions. Overall, this exposes the need to maximise the through-
put of information with the smallest volume of vibration data,
and to do so, this article explores the use of signal com-
pression as a key enabler to achieve a cost-effective, robust,
and easy-to-implement PHM solution (Tsui, K. L., Chen, N.,
Zhou, Q., Hai, Y., and Wang, W., 2015).

In the context of wireless sensor networks for diagnosing ma-
chinery, vibration signal compression has already been at-
tained using different signal processing methods like the Dis-
crete Cosine Transform (Alsalaet J. K., Najem, S. I., and Ali,
A. A., 2012), the Empirical Mode Decomposition (Chan, J.
C., and Tse, P. W., 2009), and Wavelets (Hao, W., and Jinji,
G., 2012). However, the electronics used for some IIoT de-
vices populate low-power processors that aim at the min-
imisation of energy consumption at the expense of featuring
somewhat modest processing capabilities. Thus, implement-
ing such costly complicated time-frequency transforms is of-
tentimes out of reach. In this regard, this article proposes the
use of neural networks as a general-purpose function approx-
imator because of their overall good effectiveness, and also
because their industrialisation reduces to making use of linear
algebra operations like matrix multiplication and vector addi-
tion, which are already widely supported by many embedded
platforms. Specifically, the proposed approach focuses on us-
ing the Autoencoder neural network.

The Autoencoder is a particular layered neural architecture

that inherently learns to replicate data through a compressed
representation. Its previous use in PHM highlights its ca-
pacity to detect anomalies (Goldthorpe, P., and Desmet, A.,
2018) and to construct health indices (Trilla, A., Janjua, F.,
and Bermejo, S., 2019), among others. This article uses the
compressed layer of the Autoencoder to obtain a condensed
description of the raw signal waveform, which is the most
critical factor in terms of transmitted data volume. Addition-
ally, a set of vibration health features are also extracted and
appended to the compressed signal to refine its eventual ex-
panded reconstruction. The computational cost of this stage
is not relevant in this context, but the amount of computed
indicators must be kept to a minimum to reduce the amount
of transmitted data. Finally, this array of information is quan-
tised into a low-resolution single-byte representation to build
a compact frame for the IIoT infrastructure, thus attaining
the goal of transmitting a high-quality vibration signal with
a fraction of the originally acquired data sample.

The article is organised as follows: Section 2 describes the
distributed compression/expansion analysis procedure, in-
cluding the Autoencoder technique, and the description of the
railway axlebox data. Section 3 shows the results of the signal
reconstruction evaluation. Section 4 discusses the overall ap-
proach, and Section 5 concludes the manuscript, reflects on
its impact to the current maintenance actions, and provides
avenues of future improvement.

2. METHOD

This section describes the process that has been followed to
obtain a reliable vibration compression procedure.

2.1. Distributed Vibration Companding

In order to reduce the amount of transmitted data while retain-
ing the fundamental characteristics of the vibration signal, the
whole process needs to be split into the following functions:

• Compression of the time-varying signal waveform and
its features on the edge (i.e., the sensing device).

• Expansion of the compressed signal and its feature-
corrected reconstruction on the user side (i.e., the cloud,
or a mobile platform like a tablet).

Figure 2 shows the complete companding procedure (note
that “companding” is the portmanteau of “compressing” and
“expanding”). The specific operations performed by the edge
device for the compression stage are described as follows:

1. Data Acquisition The sensing device equips an ac-
celerometer that is used to obtain an instance of the vi-
bration signature for the degrading asset (e.g., the axle-
box). The dynamic range of the sensor and the sampling
frequency of use are adjusted to the test conditions (i.e.,
at the depot or in commercial service). A sequence of

2
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Figure 2. Diagram of distributed vibration compression and expansion processes for transmitting information over a limited
bandwidth (BW) wireless channel. The role of the encoder and the decoder (both implemented with the Autoencoder) operating
on the raw signal waveform (most critical data volume) is highlighted in boldface.

real-valued samples are collected; thus, a signed 32-bit
floating-point arithmetic is used.

2. Feature Extraction An array of statistical health in-
dicators for vibration data are extracted, e.g., peak
magnitude, variance, skewness, kurtosis, crest factor,
etc. (Trilla, A., Janjua, F., and Bermejo, S., 2019; Tsui,
K. L., Chen, N., Zhou, Q., Hai, Y., and Wang, W., 2015).
These features describe particular aspects of the asset’s
degradation (e.g, driven by the failure modes).

3. Encoding The stream of raw vibration waveform data is
segmented into short-time windows, and each of these
frames is then compressed with the Autoencoder, yield-
ing a fraction of the initial acquisition size. The next
section provides further details about this operation.

4. Standardisation Each of the variables obtained so far
(the features and the compressed vibration map) is sta-
tistically standardised so that their resulting distribution
has zero mean and unit standard deviation (a Gaussian
shape is also assumed), i.e.,N (0, 1). This process is also
known as Z-score normalisation.

5. 8-bit Quantisation The resulting real values are finally
rescaled so that the ultimate normal distribution is cen-
tred on the 0-255 value range. Therefore, each variable
now has a N (128, 642) distribution, which is discretised
and may be represented with an unsigned 8-bit integer
arithmetic after a rounding operation, thus obtaining a
low-resolution representation. It is to note that this final
step requires the truncation of the standardised distribu-
tion to fit into the limited range of the single byte repre-
sentation. The truncated range is arbitrarily set to cover
95% of the real values (i.e., 2 standard deviations).

Similarly, the specific operations performed by the end user
device for the expansion stage (i.e., the cloud or a mobile
platform like a tablet) reverse the process described above:
first, the low-resolution samples are quantised into a real-
valued 32-bit floating-point arithmetic. Then, the original
variable distributions are normalised, which recovers the vi-

bration features directly. And finally, the encoded waveform
values are decoded into the initial vibration signals with the
Autoencoder. It is to note that this is a lossy compression pro-
cedure, so one last post-processing step is applied to ensure
that the reconstruction preserves the original health features.
In this work, the peak magnitude of the vibration is main-
tained because it is mostly indicative of the severity of the
incipient failure.

2.2. Autoencoder Neural Network

The Autoencoder (AE) is a connectionist machine learning
technique that replicates “essential information”. It is data-
specific, so it only works with instances that are of same
nature as the examples it has learnt from. To this end, it
uses a self-supervised learning technique that exploits auto-
association (Kramer, M. A., 1992; Stone, V. M., 2008), which
is a specific mode of supervised learning where the targets are
generated from the inputs. As a result, this neural network
learns a distributed representation of the data that captures its
meaningful attributes as its main factors of variation (Bengio,
Y., 2009).

For the end-to-end vibration compression purposes that this
work pursues (implemented on the edge device, and on the
cloud/tablet), the design of the proposed neural network ar-
chitecture is feed-forward and shallow, i.e., memoryless with
one single hidden layer. This reduces both the memory foot-
print and the computational burden, and the resulting weights
that define the behaviour of the model may be directly indus-
trialised through a set of matrix multiplications (Goldthorpe,
P., and Desmet, A., 2018). In addition, the framework of
the presented Autoencoder shows a converging layout from
its input dimensionality D into H at half of its depth (i.e.,
the encoding, compression stage), and then a diverging struc-
ture back to D toward its output (i.e., the decoding, expan-
sion stage), see Figure 3. This undercomplete configuration
forces the Autoencoder to learn the most salient features of
the training data, and thus it develops a compressed repre-
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Figure 3. Companding Autoencoder architecture. D is the
input data dimensionality, and H is the size of the hid-
den/encoding layer, which defines the learning capacity of the
neural network. The undercomplete representation is ensured
as long as H < D. The encoder part is shown with thick
arrows (along with thick states for the compressed vector),
whereas the decoder is shown with thin arrows.

sentation. The amount of hidden units H in the “bottleneck”
layer, which must be smaller than D in this case, defines the
expressiveness of this neural network and therefore modu-
lates its learning capacity. Additionally, if these hidden neu-
rons apply a nonlinear activation function like a Rectified Lin-
ear Unit, the network gains the ability to capture multi-modal
aspects of the input distribution (Japkowicz, N., Hanson, S. J.,
and Gluck, M. A., 2000), although in this case the compres-
sion transformation is essentially linear (from input to hidden
layer). Obviously this Autoencoder-based approach is lossy,
in the sense that the replica only retains the principal char-
acteristics of the data, but not the details (or the noise). A
greater reconstruction quality may be obtained with the iden-
tity, the principal component, or the overcomplete representa-
tions (making H equal to or greater than D), but these would
clearly work against the compression objective.

The proposed Autoencoder is trained with an advanced
stochastic gradient descent procedure with backpropagation
following the Adam algorithm (Kingma, D. P., and Ba, J. L.,
2015), which implements the weight updates through the in-
dividual estimation of the first and second statistical moments
of the gradients (i.e., a momentum on the gradient and its
squared value). The specific hyperparameters of use are: a
learning rate α of 0.001, a first momentum β1 of 0.9, and
a second momentum β2 of 0.999. The average root mean
square (RMS) error between the reconstruction and the orig-
inal vibration signal is used as the objective cost function,
i.e., (x̂[n] − x[n])2. This conventional optimisation protocol
still has room for some improvements through regularisation
penalties, yielding different Autoencoder solutions. These re-
finements are described hereunder.

2.2.1. Ordinary AE

This Autoencoder is directly trained to compress the input
into some lower-dimensional representation so that the exact
same input may thereafter be reconstructed, without any fur-
ther constraint. This is analogous to a maximum-likelihood
estimation of the optimum weights, and therefore it is subject
to overfitting. Obviously, some kind of regularisation strategy
would be desirable here, but the Ordinary AE does not con-
template it explicitly; this model only relies on the limited
representational capacity of the undercomplete architecture.
However, this work also exploits the advantage of limiting
the number of epochs during training, because gradient de-
scent with early stopping is similar to a squared Euclidean
norm regularisation of the weight parameters (Zinkevich, M.,
2003). This strategy generalises the performance of the re-
sulting Autoencoder.

2.2.2. Denoising AE

Another strategy for regularising the Autoencoder is by
stochastically corrupting the vibration signal input with noise,
while the original uncorrupted signal is still used as target
for the reconstruction. This method is known as the Denois-
ing AE (Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y.,
and Manzagol, P.-A., 2010). This approach learns to preserve
the statistical regularities of the input vibration signal, and to
undo the random corruption, which can take different forms:

• Additive White Gaussian Noise (AWGN) The addition
of wideband noise is inspired by many natural processes,
and its Gaussian amplitude distribution is driven by the
central limit theorem of probability theory when many
random processes interact. This is a basic noise model
used in information theory, and this work regards its use-
ful convenience for the corruption of the input.

• Masking The random setting of some inputs to zero is
also a successful regularisation method. This occlusion
strategy forces the Autoencoder to deal with data that
contains missing values. This is an interesting prop-
erty because it regards the Autoencoder as a generative
model.

2.2.3. Sparse AE

Another strategy for regularising the Autoencoder is via the
sparsity in the encoding space. The Sparse AE (Makhzani,
A., and Frey, B., 2014) offers an alternative method for con-
straining the amount of information that may traverse the net-
work and thus require a learned compression of the input data,
without reducing the number of hidden units. This Autoen-
coder adds a sparsity penalty on the activation of the hidden
layer so that only a few units may operate at a given time (the
correction is increased with the amount of contribution). In
this approach, the network gets selective and sensitive to in-
dividual hidden units toward specific attributes of the input
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vibration data. This sparsity cost is attained by computing
the average activations in the hidden layer, and then scoring
the Kullback-Leibler divergence between a Bernoulli random
variable with this mean value, and another one with a desired
small sparse average value.

2.2.4. Contractive AE

There is yet another strategy for regularising the Autoen-
coder considered in this work that is known as the Contractive
AE (Rifai, S., Vincent, P., Muller, X., Glorot, X., and Bengio,
Y., 2011). In this approach the Autoencoder is trained so that
the derivatives of the hidden layer activations are small with
respect to the input. This prevents that small changes in the
input may lead to large changes in the encoding space, so in
a sense it adds robustness to small perturbations around the
data. This effect is attained by introducing a penalty term in
the cost function that corresponds to the Frobenius norm of
the Jacobian matrix of the encoder activations with respect to
the input. It is shown that this results in a localised space con-
traction, which in turn yields robust features on the activation
layer.

2.3. Vibration Data and Stream Processing

In the present PHM environment, real-time data exchange is
not necessary because the gradual degradation of mechanical
assets like axleboxes does not occur in a short time. Thus,
The Motes operate with asynchronous connectivity (Boyes,
H., Hallaq, B., Cunningham, J., and Watson, T., 2018). How-
ever, the compression feature of the Autoencoder is limited
to its input dimensionality D. In order to transmit a whole
“long” vibration signal as a stream, the original sequence
needs to be buffered and segmented into windows of length
D, then compressed into vectors of length H , and finally be
transmitted sequentially in the payload of the wireless proto-
col frames for the available interfaces, e.g., Wi-Fi, ZigBee,
Bluetooth LE, or LoRa.

To evaluate the effectiveness of the companding method with
the Autoencoder, this work uses a dataset of axlebox vibra-
tion data acquired for a metro stock, rolling at 5mph, on a
straight level test track, in the depot. Each acquisition com-
prises a waveform of 4 seconds sampled at 3200Hz. The com-
plete dataset includes over 28000 instances of vibration seg-
ments (with 500 samples each) divided into different degra-
dation levels (Trilla, A., Janjua, F., and Bermejo, S., 2019),
i.e., good, regular, and bad condition.

3. RESULTS

This section compares the different Autoencoder strategies to
determine which of them yields the best companding effec-
tiveness for the IIoT, i.e., the maximum compression with the
minimum loss. Their performance is estimated with a round
of stratified random subsampling with 5% of the instances
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Figure 4. Autoencoder reconstruction error with respect to
the size of the hidden/encoding layer (H). The points corre-
spond to the mean value of the RMS error distribution (as-
suming Gaussian normality), and the whiskers correspond to
one standard deviation. Note that the AE strategy of use may
be distinguished by the shape of the points and the size of the
error caps.

(i.e., around 1400) for testing. Figure 4 shows how the size
of the hidden/encoding layer impacts the reconstruction error
of the test signals for each AE approach.

In general, it can be seen that regardless of the regularisation
strategy of use, all approaches display a flat constant error
response down to 200 hidden units (with a greater or lesser
offset), and a linear increasing slope beyond that inflection
point (also increasing the variability). The interpretation that
follows for this effect is that down to 200 hidden units the
Autoencoder generalises well, but further compression limits
its representational capacity to a point that the neural network
underfits the data and so exhibits a steady increase of the re-
construction error. Additionally, it is the Ordinary Autoen-
coder, which only relies on the undercomplete representation
for regularising its performance, the one that attains the low-
est reconstruction error. When an additional regularisation
strategy is applied, the resulting “over-regularised” Autoen-
coder diminishes its ability to adapt and converge to a better
solution. Taking the inflection point at H=200 hidden units
as the reference (with input D=500), the difference between
the least performing strategy (i.e., the Contractive AE, with
N (0.2479, 0.11562)) and the best (i.e., the Ordinary AE, with
N (0.1815, 0.09912)) is statistically significant with a confi-
dence interval of 95% using an Independent Samples t-test.

It is to note that this reconstruction performance is averaged
over all test instances, which belong to different condition
categories. In order to shed some light into this particular
aspect, Figure 5 shows the distribution of error values regard-
ing the degradation of the test assets for the best-performing
companding strategy, i.e., the Ordinary Autoencoder with 200
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Figure 5. Ordinary AE (with input D=500, and compressed
output H=200) reconstruction error with respect to degraded
test asset conditions (good, regular, and bad).

hidden units. This graph makes it clear that as the axleboxes
degrade, the reconstruction accuracy of the Autoencoder de-
creases, and that happens precisely for the most critical situ-
ations, when warnings and alarms possibly need to be raised
(i.e., for the bad condition). That’s why it is of utmost im-
portance to take into account the health features to refine the
reconstruction of the waveforms. This loss of reconstruction
performance with the progress of the degradation is probably
caused by the increased dynamic range and non-stationarity
of the signals. In addition, the shape of this distribution ques-
tions the previous normality assumption, so the former results
must only be taken as indications.

Finally, the transformation of a window of 500 vibration sam-
ples into a condensed vector of 200 points yields a compres-
sion rate of 2.5, and the 8-bit quantisation that follows applies
another rate of 4. Therefore, the final compression rate is of
10, and the resulting system displays a good (almost lossless)
companding performance. Figure 6 and Figure 7 show how
the Ordinary Autoencoder reconstructs a vibration signal in
the worst-case scenario: foreshadowing a failure (the original
signal belongs to the “bad” axlebox condition). It can be seen
that the time waveform preserves the amplitude that signals
the severity of the degradation, and the frequency spectrum
retains the location of the source of the failure, so the signal
compression process does not modify the result of the anal-
ysis that would be obtained with the original raw data. In
the healthy case, where the discrepancy between the original
waveform and its reconstruction is even smaller, a complete
overlap is visually observed, with a signal amplitude an order
of magnitude smaller. Consequently, the Ordinary Autoen-
coder approach enables a fine-grained diagnosis through IIoT
monitoring technology.
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Figure 6. High-peaked non-stationary time waveform of
an autoencoded vibration signature showing a bad condition
(Ordinary AE with D=500 and H=200).
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Figure 7. Frequency spectrum of the autoencoded vibration
signature shown in Figure 6.

4. DISCUSSION

By trying to approximate the identity function with an under-
complete representation, the Autoencoder attains a flexible
compression strategy that significantly reduces the amount of
data to be transmitted. However, the Autoencoder is not usu-
ally considered to be a good compressor in the conventional
broad sense, because it lacks the versatility to be applied to
data of arbitrary nature. It doesn’t operate by exploiting the
redundancy in the data to build efficient codewords, so per-
haps its performance is limited by this aspect. Nevertheless,
it is to note that the compressed layer of the Autoencoders
studied in this work corresponds to the linear components of
the vibration signals (Duda, R. O., Hart, P. E., and Stork, D.
G., 2001), and on that space a clustering technique followed
by vector quantisation could still be applied to obtain such
an encoded codebook of principal centroids (despite possi-
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bly preventing the detection of anomalies in this latent repre-
sentation). Additionally, the low-resolution quantisation step
presented in this work is linear, and a more effective proce-
dure might be obtained with a nonlinear quantiser enhancing
the main concentration of data in the feature distribution.

In order to better understand the internal behaviour of the
Autoencoder beyond the mapping, other strategies have
also been considered, like the use of convolutions and fil-
ters. Inspired by the suggestion that the architecture of the
neural network is more important than the values of the
weights (Gaier, A., and Ha, D., 2019), the use of pairwise
correlations has been studied to exploit sparse time dilations
like WaveNet (Oord, A., Dieleman, S., Zen, H., Simonyan,
K., Vinyals, O., Graves, A., Kalchbrenner, N., Senior, A.,
and Kavukcuoglu, K., 2016) and Time-Delay Neural Net-
works (Peddinti, V., Povey, D., and Khudanpur, S., 2015).
In the case that the vibration waveform gets averaged as if by
the use of a low-pass filter, the fundamental signal behaviour
is retained, but the Autoencoder increases the reconstruction
error with an offset. Similarly, the same result is obtained if
the input waveform is down-sampled to enhance the details
contained in the high-frequency components. In both cases,
though, the performance inflection point at 200 hidden units
is equally obtained. Therefore, it seems that the densely lay-
ered Autoencoder eventually learns the most effective signal
transformation, but as the compression rate is incremented,
the reconstruction is increasingly smoothed (Trilla, A., Jan-
jua, F., and Bermejo, S., 2019).

Finally, it is to note that the current compression is obtained
with a linear combination of the input vibration samples,
which is similar to the data-driven measurement matrix that
may be developed in compressed sensing (Wu, S., Dimakis,
A. G., Sanghavi, S., Yu, F. X., Holtmann-Rice, D., Storcheus,
D., Rostamizadeh, A., and Kumar, S., 2019). The recent
state of the art applied to vibration signals (which also in-
volves frequency considerations) obtains compression rates
up to 5 (Premanand, B., and Sheeba, V. S., 2020), whereas
the approach described in this contribution reaches rates of
10 with the same error. However, the inclusion of an addi-
tional hidden layer before (and after) the current encoding
would lead to an intricate nonlinear representation, poten-
tially smaller than 200 units, and therefore increase the cur-
rent compression rate. The universal approximation theorem
suggests that this is possible (Cybenko, G., 1989), but it has
not been explored in this work to minimise the processing
especially on the edge device. In a similar vein, the space
complexity is also to be considered in an embedded Machine
Learning environment given the limited memory of some mi-
crocontrollers (Warden, P., and Situnayake, D., 2020). The
largeness of the encoding matrix, thus, may be a limiting fac-
tor of the industrial deployment of this solution. Nonethe-
less, this size may be conveniently reduced by shortening the
length of the input buffer while keeping the same compres-

sion rate at the expense of increasing the running time, e.g.,
compressing 250 vibration samples into 100 (instead of 500
into 200) maintains the same representational capacity with
a quarter of the original matrix size (in number of weights),
and it takes twice as much to complete the processing.

5. CONCLUSIONS

The use of the activation in the hidden/encoding layer of
an Ordinary Autoencoder with an undercomplete represen-
tation along with a low-resolution quantisation step, signif-
icantly reduces the amount of vibration data to be transmit-
ted through an IIoT monitoring network. With compression
rates up to 10, the high quality of the reconstructed signal
waveforms permits implementing a fine-grained diagnosis.
The proposed approach reduces the needed bandwidth for the
transmission, and/or shortens the download time for each ac-
quisition. Also, its impact speeds up the maintenance cycle
on the workshop floor, and/or increases the inspection fre-
quency on remote locations.

The future work that is currently envisaged opens up two
main fronts. On the one hand, exploring the use of complex
numbers to obtain a richer representational capacity of the
underlying neural network (Trabelsi, C., Bilaniuk, O., Zhang,
Y., Serdyuk, D., Subramanian, S., Santos, J. F., Mehri, S.,
Rostamzadeh, N., Bengio, Y., and Pal, C. J., 2018). And on
the other hand, developing a deep network pruning strategy to
facilitate its implementation on embedded systems with lim-
ited hardware resources (Han, S., Mao, H., and Dally, W. J.,
2016).
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Neural Networks.
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ABSTRACT

The wheel-rail interface is regarded as the most important
factor for the dynamic behavior of a railway vehicle, affect-
ing the safety of the service, the passenger comfort, and the
life of the wheelset asset. The degradation of the wheels in
contact with the rail is visibly manifest on their treads in the
form of defects such as indentations, flats, cavities, etc. To
guarantee a reliable rail service and maximize the availability
of the rolling-stock assets, these defects need to be constantly
and periodically monitored as their severity evolves. This in-
spection task is usually conducted manually at the fleet level
and therefore it takes a lot of human resources. In order to
add value to this maintenance activity, this article presents an
automatic Deep Learning method to jointly detect and classify
wheel tread defects based on smartphone pictures taken by the
maintenance team. The architecture of this approach is based
on a framework of Convolutional Neural Networks, which is
applied to the different tasks of the diagnosis process including
the location of the defect area within the image, the prediction
of the defect size, and the identification of defect type. With
this information determined, the maintenance-criteria rules
can ultimately be applied to obtain the actionable results. The
presented neural approach has been evaluated with a set of
wheel defect pictures collected over the course of nearly two
years, concluding that it can reliably automate the condition
diagnosis of half of the current workload and thus reduce the
lead time to take maintenance action, significantly reducing

Alexandre Trilla et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

engineering hours for verification and validation. Overall,
this creates a platform of significant progress in automated
predictive maintenance of rolling stock wheelsets.

1. INTRODUCTION

Wheel tread degradation is a common downtime cause for
rolling-stock which can significantly affect service availabil-
ity. Railway wheelsets are usually made of steel because of
the high load they must bear and the generally high speed of
this transport service. In this setting, it is in the wheel-rail
interface that the incipient degradation damage develops as
visible defects like cracks, spalls, shells, and skid flats (Magel,
E., and Kalousek, J., 1996). If the severity of these defects
compromises the safety operational considerations of the rail-
way service (among other additional criteria, like the comfort
of the passenger in high-speed rail), the trains are driven out
of commercial service to perform a reprofiling maintenance
action with the lathe in the depot. This activity is typically
scheduled on a periodic mileage basis, but due to the nature
of defect occurrence and its evolution, inspections are carried
out as part of the regular maintenance procedure to guarantee
the reliability of the service and extend the wheel life.

The inspections of wheel tread condition have been tradition-
ally approached by monitoring dynamic variables (i.e., time-
varying signals) such as the force and the strain, and also
by using static variables like the raster image provided by a
picture, which is rich in spatial information. And regarding
the data-driven algorithms of their diagnosis methods, most
of these strategies rely either on low-level/pixel-wise heuris-
tics (Zhang, W., Zhang, Y., Li, J., Gao, X., and Wang, L., 2014;
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Hyde, P., Ulianov, C., and Defossez, F., 2016; Zhang, J., Guo,
Z., Jiao, T., and Wang, M., 2018), or on maximum-margin
classifiers like the Support Vector Machines (SVM) (Ma, K.,
Vicente, T. F. Y., Samaras, D., Petrucci, M., and Magnus, D.
L., 2016; Guo, G., Peng, J., Yang, K., Xie, L., and Song, W.,
2017). However, these solutions seem to be complementary,
and neither clearly outstands its counterpart.

Out of the numerous endeavors to detect rail wheel defects,
this work underlines the study developed by Krummenacher
and colleagues, which compares an approach using wavelets
with SVM to a time-series embedding with a Convolutional
Neural Network (CNN), motivated by the recent success of
this widely-adopted deep neural Computer Vision technol-
ogy (Krummenacher, G., Ong, C. S., Koller, S., Kobayashi, S.,
and Buhmann, M., 2018). Their investigation concludes that
the CNN approach improves the classification performance
through its automatic representation learning ability. This re-
sult is much in line with the current popular Machine Learning
(and in particular Deep Learning) research trend driven by
CNN’s ability to spot surface degradation problems (Han, K.,
Sun, M., Zhou, X., Zhang, G., Dang, H., and Liu, Z., 2017;
Shang, L., Yang, Q., Wang, J., Li, S., and Lei, W., 2018;
Zhang, Y., Cui, X., Liu, Y., and Yu, B., 2018).

Following state of the art Deep Learning techniques for Prog-
nostics and Health Management (PHM) (Fink, O., Wang, Q.,
Svensén, M., Dersin, P., Lee, W.-J., and Ducoffe, M., 2020),
the present work is concerned with the design and implemen-
tation of a rail wheel tread defect diagnosis system based on
CNN applied to smartphone pictures that is able to cope with
the increasing productivity demand to maintain more assets
with the same resources and reduce the engineering lead time
to take maintenance action (Vickerstaff, A., Bevan, A., and
Boyacioglu, P., 2020). To attain this goal, this approach breaks
down the complexity of the whole value chain into modules
that may be developed in their own specific context, and it
blends the hands-on experience available on the shop floor
with the strong technical background available in the engineer-
ing office. In addition, an industrialized online web application
based on modern software development tools and practices is
also created to deploy this solution at the fleet level.

This article outlines the different steps involved in the develop-
ment of this project: from the research that statistically states
the feasibility of the proposed solution, to its industrializa-
tion through a minimum-viable product as a proof of concept.
Section 2 describes the design procedure, including the de-
scription of the data, the learning technique and its evaluation,
and the robust industrialized solution. Section 3 shows the
expected performance results. Section 4 discusses the overall
outcomes and the limitations of the approach, and Section 5
provides the conclusions of the work and reflects on its impact
on the current maintenance plan along with the future avenues
of improvement.

2. METHOD

This section describes process that has been followed to obtain
a robust wheel tread defect diagnosis method.

2.1. Defect Data Description

To merge the knowledge from both the depot workshop and
the engineering office, data from each environment needs to
be available for learning. This section describes the kind of
information that can be extracted from each perspective.

2.1.1. Maintenance Data

A collection of 4600 wheel tread defect pictures taken with
smartphones has been compiled over the course of two years
by the maintenance repair and overhaul (MRO) team in the Als-
tom’s Traincare Centre (i.e., the London Underground North-
ern Line fleet). The maintenance staff take pictures whenever
an incipient defect is detected on the shop floor. The accu-
mulated dataset depicts the presence of six different defects,
which are described as follows with increasing severity:

Indentation (INDT) Superficial dent caused by the wheels
running over a hard object on the track. This category also
includes the “pitting” defect, which displays a similar ef-
fect on the wheel tread but its root cause is the mechanical
strain.

Rolling Contact Fatigue (RCF) Cracks caused by repeated
contact stress during the rolling motion of the wheels.
RCF is a major wear issue in the London Underground
infrastructure and its monitoring is incredibly labor inten-
sive requiring precise visual inspection and detailed data
recording (Vickerstaff, A., Bevan, A., and Boyacioglu, P.,
2020).

Wheel Flat (FLT) Rash that appears on both wheels caused
by the wheelset skidding on the rail.

Clustering (CLUS) Also known as multiple cavities, it has
to do with the appearance of several bruises along the
tread due to uneven contact issues.

Spalling (SPALL) Also known as single cavity or shelling,
it is the critical development of one of the multiple cavities
described before.

Crazing (CRAZ) Also known as thermal cracking, it is a
fracture that occurs with repeated heating and cooling of
the wheel tread surface caused by traction and braking
actions.

As an example, Figure 1 shows a wheel tread picture with
spall and RCF defects. In this dataset, though, there is a strong
bias toward the RCF type (with over 80% of the instances).
Such a major defect type imbalance may pose an adverse
situation for Machine Learning (Yang, Y., and Xu, Z., 2020).
Therefore, this work downsamples the RCF subset of data so
that the resulting defect type distribution is more amenable to
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Figure 1. Wheel tread showing SPALL and RCF defects.

Table 1. Wheel tread defect dataset properties, including the
number of instances, the defect type distribution, the contex-
tual information (i.e., location and physical size of the defect),
and the diagnosis assessment.

Attribute MRO Data ENG Data
Size 1200 118
INDT 23% 16%
RCF 36% 52%
FLT 21% 7%
CLUS 8% 11%
SPALL 11% 4%
CRAZ 1% 0%
(None) 0% 10%
Location 3 7
Physical size 3 7

Go 7 15%
Warning 7 51%
Stop 7 34%

direct supervised learning. The reduced working maintenance
dataset comprises 1200 picture instances, and its new defect
type distribution is shown in Table 1. It can be seen that the
crazing defect type is the underrepresented minority with only
1% of the instances. This skew is likely to cause some learning
trouble, but that’s an inherent difficulty in this environment
that the proposed system will evaluate.

In addition to the graphical content of the picture, the mainte-
nance staff also provides additional information in the form of
textual data, identifying the inspected train unit, the physical
size of the defect, etc. This unstructured context is processed
with regular expressions to deal with the uneven spacing, the
letter casing, etc., in order to complement the description of
the spotted defects. Nevertheless, the dependability in this
supplementary material may be questionable, and the picture
remains to be the most reliable datum that the engineering
team reviews for the definitive diagnostic. Therefore, the
MRO context must only be used as an informative indication.

2.1.2. Engineering Data

In a similar vein, the engineering (ENG) team has curated a
collection of 118 defects, see Table 1 for details. Note that
this dataset is an order of magnitude smaller, and also exhibits
a strong bias toward the RCF defect type. In addition, this
set misses the “crazing” type, and it contains the absence of
defect (i.e., images without a problem).

Although contextual data such as the location and the physical
size of the defect are not available here, what is especially im-
portant is the condition assessment from the expertise, which
also displays strong bias toward the “warning” statement. This
is the engineering advice that drives the maintenance actions.
In sight of the characteristics of the MRO and ENG datasets,
which are both partially overlapping and complementary, there
may exist some potential criteria transfer issues that need to
be observed.

2.2. Image Processing

The collection of raster images that depict the wheel tread
defects poses challenging issues due to the variability of the
hand-held smartphone-based capture process. Depending on
who is taking the picture and when, there is inconsistency in
the focus, distance to the defect, lighting, etc. To address these
concerns, a pixel-level Image Processing module is created.

2.2.1. Preprocessing

First, the three color channels (i.e., RGB) are conflated into
one single intensity channel. The steel of the wheel treads
is mostly blue-grayish, and any decoloration in the metal is
equally visible with a shade on the resulting black-and-white
picture, so the useful information is expected to be retained
with this transformation. The image is now computationally
lighter and therefore more tractable for further analysis.

Then, the edges of the picture, which may be taken vertically
or horizontally, are trimmed so that the resulting image is
standardized with a squared shape. Note that the area of
interest containing the defect is always located around the
center. With this operation, the size of the image is reduced
to three quarters of its original size, which adds yet another
time-computational advantage as less data needs be processed.

Finally, the histogram of the image is equalized to enhance its
contrast (Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie,
R., Geselowitz, A., Greer, T., Romeny, B. t. H., Zimmerman,
J. B., and Zuiderveld, K., 1987). Figure 1 illustrates the appli-
cation of these preprocessing steps to a defective wheel tread
picture.

2.2.2. Data Augmentation

The abundance of data is required to design a Computer Vi-
sion solution based on Deep Learning, and the current defect
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data collections are insufficient for use according to modern
dataset size standards. In this situation, the system is likely
to overfit and memorize the data, thus lacking the capacity
to generalize. Therefore, a series of affine transformations
(i.e., modifications that preserve the collinearity and the ra-
tios of distances) are applied to these instances in order to
augment their amount while retaining the salient degradation
information (Simard, P. Y., Steinkraus, D., and Platt, J. C.,
2003). Specifically, 4 translations (north, south, east, and west
shifts), 2 rotations (clockwise and counterclockwise), and 4
mirrorings (horizontal, vertical, and the combined flipping) are
performed. Additionally, 2 levels of additive white Gaussian
noise are also applied. Eventually, the size of the dataset is
increased 64-fold, yielding a working collection of over 80k
instances (original and manufactured), which now enables
exploring the data-driven solution. What is more, it is known
that even small input perturbations like these are sufficient to
considerably degrade the system’s performance (Engstrom,
L., Tran, B., Tsipras, D., Schmidt, L., and Madry, A., 2019).
Therefore, by taking them into account during the training
procedure, the final system is expected to increase its overall
robustness against these potentially adverse effects (Hermann,
K. L., Chen, T., and Kornblith, S., 2020).

2.3. Multitask System Architecture

To tackle the complexity of the wheel tread defect diagnosis
problem, this work suggests a divide-and-conquer approach,
where the main task is divided into five specialized data-driven
modules:

Defect Detection - Location (DD-Loc) Identifies the cen-
tral point of the defect area in the preprocessed image.
This task is addressed as regression problem (i.e., land-
mark detection) where the coordinates of the defect loca-
tion are predicted in pixel space.

Defect Detection - Physical size (DD-Phy) Predicts the size
of the defect (width and length) in a given physical mea-
sure (e.g., millimeters). This task is also addressed as a
regression problem.

Defect Classification (DC) Discriminates the different types
of defects present in the defect area of the input picture.
This task is addressed as a multi-label classification prob-
lem where the defects are not mutually exclusive, and the
outputs represent defect membership probabilities. Ulti-
mately, these probabilities are rated against a threshold
✓DC and a discrete vector of potential defects is issued.

Engineering Assessment (EA) Determines the diagnostic
based on the type of defect, its physical size, and a set
of embedded logical rules that guarantee the minimum
acceptance criteria. The output complies with a kind of
traffic lights interface: go, warning, and stop.

Confidence Index (CI) Indicates the degree of trustworthi-
ness in the provided diagnosis. Its output operates as a

binary variable.

Figure 2 shows the end to end diagnosis chain. Note that
in addition to these five main data-driven modules, there is
also the Image Processing (IP) block (already explained in
Section 2.2), the defect cropping block, and the circumference
calculation (CC) block. The latter two auxiliary blocks are
self-explanatory.

2.4. Convolutional Neural Networks

The task division approach ensures that the multiple sources
of learning signals do not get scrambled, so that each module
can specialize. However, all these detection and classification
problems operating on image data can be solved effectively
with a convolutional neural architecture, mimicking the hier-
archical feature learning strategy that occurs with the visual
system’s compositional structure (Bengio, Y., 2009), where
the initial layers learn basic forms and the subsequent layers
combine them to create complex patterns. CNN’s are excep-
tionally successful at dealing with the high dimensionality of
an image because they inherently reduce the solution search
space (i.e., amount of learnable parameters) with a weight
sharing strategy: they use a series of trainable filters that ex-
ploit the local surface statistical regularities of the pictures (Jo,
J., and Bengio, Y., 2017), making the whole neural system less
prone to overfit the data. In turn, this approach also makes
these networks especially robust to location, detecting the
same pattern in different parts of the photographs as the same
filter kernel is reused throughout the image, which exhibits a
translationally invariant structure.

Given all this common framework, this section describes a
single flexible unified CNN to be applied to each task inde-
pendently. For computational purposes there is an implicit
image rescaling to 75 px that does not compromise the details
of the defects, as the spatial aggregation of lower dimensional
embeddings can be done without much or any loss in represen-
tational power (Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens,
J., and Wojna, Z., 2016).

2.4.1. Framework Layout

Discovering neural network architectures remains a laborious
but crucial task (Real, E., Moore, S., Selle, A., Saxena, S.,
Suematsu, Y. L., Tan, J., Le, Q. V., and Kurakin, A., 2017),
because carefully balancing network depth, width, and reso-
lution can lead to better performance (Tan, M., and Quoc, V.
L., 2019). In the aim of taking advantage of the many years
of focused investigation in neural layouts, the proposed CNN
framework is fundamentally based on the classic LeNet-5 ar-
chitecture (Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P.,
1998), which defines two convolutional stages and three fully
connected stages, and the AlexNet architecture (Krizhevsky,
A., Sutskever, I., and Hinton, G. E., 2012), which includes
some Deep Learning improvements like the Rectified Lin-
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Figure 2. Wheel tread defect diagnosis framework. The main data-driven modules are: Defect Detection (DD-Loc and DD-Phy),
Defect Classification (DC and ✓DC ), Engineering Assessment (EA), and Confidence Index (CI). These are highlighted in shade.
The auxiliary modules are: Image Processing (IP), Cropping, and the Circumference Calculation (CC). These are shown in white.
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Block 2
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Figure 3. Functional blocks of the proposed versatile unified CNN, each of them containing a layer of learnable weights, an
element-wise non-linearity with the ReLU activation function, and a layer of regularization. The Feature Learning blocks are
displayed with a white background, whereas the Task Learning blocks have a light shade, showing the transition from the input
data to the desired output result.

ear Unit (ReLU) as the non-linear activation function to train
faster (Nair, V., and Hinton, G. E., 2010) and avoid the van-
ishing gradient problem (Glorot, X., Bordes, A., and Bengio.
Y, 2011), and Dropout (i.e., random neuron deactivation) to
preclude the co-adaptation of the feature detectors (Hinton, G.
E., Srivastava, N., Krizhevsky, A., Sutskever, I., and Salakhut-
dinov, R. R., 2012) and prevent overfitting (Srivastava, N.,
Hinton, G., Krizhevsky, A., Sutskever, I., and Salakhutdinov,
R., 2014). Additionally, a subsampling overlap with a min-
imum stride of 1 px in a max-pooling step is considered to
merge features, increase the robustness to noise, and improve
the generalization. In summary, the basic building block of
the proposed CNN combines a layer of adjustable weights
like the convolutional filters or the fully dense connections, a
non-linear rectification transformation (i.e., always positive
neuron output values), and a layer of regularization with max-
pooling or dropout. The idea of using a block of layers as
a structural unit is gaining popularity (Khan, A., Sohail, A.,

Zahoora, U., and Qureshi, A. S., 2020), and therefore this
approach is aligned with the latest trends in CNN architecture
design. Figure 3 shows this layout, clearly identifying the two
learning stages: the features and the task, which are described
as follows.

2.4.2. Feature Learning

The Feature Learning stage discovers the degradation-relevant
traits in the pictures through a chain of non-linear convolu-
tional and pooling operations, which initially learns simple
shapes like curves and straight lines, and then combines these
motifs to progressively create more complex and invariant
compositions in a higher level of abstraction (Mahendran, A.,
and Vedaldi, A., 2015), just like many natural signals in vi-
sual neuroscience (LeCun, Y. and Bengio, Y., and Hinton, G.
E., 2015). It is to note that in the proposed CNN design, no
padding is used because there is no useful information in the
borders of these images, which always display the defects
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in the central region. Once the system has been trained, the
adjusted weights of the initial layers (i.e., the image filters)
may then be reused throughout the tasks (Donahue, J., Jia,
Y., Vinyals, O., Hoffman, J., Zhang, N., Tzeng, E., and Dar-
rell, T., 2013; Razavian, A. S., Azizpour, H., Sullivan, J., and
Carlsson, S., 2014), which are learned in the following fully-
connected layers. The next section delves into the details of
this upcoming step.

2.4.3. Task Learning

The Task Learning step is acquired with the remaining fully-
connected layer blocks that follow the convolutional blocks,
see Figure3. The non-linear learning capacity is guaranteed
with this multilayer structure and the ReLU activation function.
It is to note, though, that the last fully-connected block fea-
tures a logistic sigmoid function, bounding the task dependent
variable outputs between 0 and 1.

For the Defect Detection regression tasks (DD-Loc and DD-
Phy), a maximum-value normalization step is performed tak-
ing into account the picture pixel size for the location task,
and a reasonably large physical size for the measurement task.
For these targets, a minimum squared error (MSE) training
cost is used, which aims to reduce the real-valued prediction
residuals.

For the Defect Classification task (DC), a binary class vector
is used because the target degradation picture may have many
labels (i.e., multiple defects on the same wheel tread). In this
case, the cost function of use is the binary cross-entropy, so
that each dimension of the output represents the posterior prob-
ability of the defect-class membership. This corresponds to the
effective deployment of many logistic regressions following
the one-vs-all multiclass strategy. Given that the defects are
not mutually exclusive, the learning feedback will be shared
among the intermediate layers. Finally, a heuristic decision
rule based on a threshold is used to discretize the output: a
defect class is selected if its predicted probability is over this
minimum probability limit.

2.4.4. Feature/Task Embedding

This contribution states that the first two convolutional blocks
are mainly meant to deal with the feature learning phase, and
the three fully connected blocks that follow mostly learn the
task at hand, see Figure 3 for the design diagram that shows
the transition between the two stages. This feature/task inte-
gration is motivated by the local feature transfer aspect in the
convolutional filters (Oquab, M., Bottou, L., Laptev, I., and
Sivic, J., 2014), which can detect a particular pattern all over
the picture, a characteristic that dense layers do not exhibit
due to their rigidity. As it is, the proposed system learns a
non-linear but rather shallow set of features, and a deep set of
functional task operations. Nonetheless, the boundary between
these two objectives in the network is not clear. The same

solution could have been equally described as a profoundly
intricate feature learner with four blocks — two convolutional
and two fully-connected — and a very shallow linear task
learner with only one dense block, which is perhaps the gen-
erally adopted CNN functional interpretation. The obtained
results would have been the same, especially if the different
CNN’s are freshly trained or the parameters are reused only
for initialization pretraining purposes, but their interpretation
would be different.

This work puts forward the contention that the task-specific
learned knowledge is effectively embedded in the intermediate
fully-connected hidden layers, as their large expressiveness
supports this capacity (over 8 million tunable weights for
this approach), see Table 2 for a detailed description of the
system parameters. Although it has been pointed out that the
hidden units may learn similar representations that converge
to analogous features across the tasks (Kornblith, S., Norouzi,
M., Lee, H., and Hinton, G., 2019), these layers may also
experience some optimization difficulties (Yosinski, J., Clune,
J., Bengio, Y., and Lipson, H., 2014) (i.e., layers FC3 and
FC4). In this last cited reference it is documented that the
transferability of features decreases as the distance between
the base task and target task increases, thus supporting the
rigid task-specific learned knowledge, and limiting the extent
of their parameter reuse. This work suggests that only the first
two convolutional blocks may be inherited in a different task
and all the intermediate dense layers are to be retrained for
each different objective.

2.5. Performance Evaluation

Different key performance indicators are used to evaluate the
operation of the task-driven CNN approaches. The regression
objectives are assessed with the variability of the resulting
error distribution for a given confidence interval. This fig-
ure is indicative of the amount of epistemic uncertainty. For
the classification task, the overall system performance is ob-
tained with the macro-averaged accuracy, precision, and recall
metrics (Duda, R. O., Hart, P. E., and Stork, D. G., 2001).
These values represent the rate of good classifications, and the
penalties that false alarms and missed defects introduce.

In the scenarios where the same dataset is used for learning
and evaluation, the performance values are generally estimated
with Monte Carlo cross-validation (Dubitzky, W., Granzow,
M., and Berrar, D., 2007). Specifically, four rounds of re-
peated random subsampling are applied on a stratified set of
defect types with a train/test split rate of 80/20 (%), which
should yields an error sample size over 1k instances that is
sufficient to reliably conduct the statistical calculations. In the
scenarios where the working dataset is too small for applying
this approach, then a leave-one-out cross-validation strategy
is pursued. Finally, in the scenarios where both datasets are
used, the MRO data is used for training, and the ENG data is
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Table 2. CNN parameter chart. The Dropout layers feature a probability of 0.1, and the OR or OC represent the regression or the
classification output.

Block Layer ID Type Filter Stride Amount Units Activation Parameters
1 C1 Conv2D (5,5,1) (1,1) 6 (71,71,6) ReLU 156
1 P1 Max Pool (2,2) (1,1) (70,70,6) Linear 0
2 C2 Conv2D (5,5,6) (1,1) 16 (66,66,16) ReLU 2416
2 P2 Max Pool (2,2) (1,1) (65,65,16) Linear 0
3 FC3 Dense 120 ReLU 8112120
3 D3 Dropout 120 Linear 0
4 FC4 Dense 84 ReLU 10164
4 D4 Dropout 84 Linear 0
5 OR Dense 2 Logistic 170
5 OC Dense 6 Logistic 510

held out for testing.

2.6. Development and Industrialization

The Machine Learning research is entirely conducted with the
Python3 programming language and its data science ecosys-
tem environment for PHM (Rezaeianjouybari & Shang, 2020),
mainly led by NumPy, Scikit-learn and SciPy. For the image
processing tasks, OpenCV and scikit-image are also used. Fi-
nally, the intensive computations that Deep Learning entails
are carried out by TensorFlow2 (Guo, Q., Chen, S., Xie, X.,
Ma, L., Hu, Q., Liu, H., Liu, Y., Zhao, J., and Li, X., 2019).

The industrialization of the proposed solution for creating a
minimum-viable product leverages the latest developments of
the open-source big data ecosystem (Cui, Y., Kara, S., and
Chan, K. C., 2020). The full architecture stack is running on
top of a cluster of machines managed by Kubernetes, a well-
proven system to automate, scale and ensure high availability
of computer applications. Kubernetes has been increasingly
used in the field of machine learning over the past years (Aji,
I. P., and Kusuma, G. P., 2020; Wu, C., Haihong, E., and
Song, M., 2020). It is divided into four layers: (A) the data
layer stores all the data used by the product; (B) the flow layer
orchestrates and schedules the “hand-to-hand” transfer of data
between the different applications; (C) the application layer
centralizes all the “business-value” functions performed by
the wheel tread defect diagnosis framework presented in this
paper, and (D) the presentation layer contains the user app.
The technologies used for each layer, illustrated in Figure 4,
are described as follows:

Data Layer PostgreSQL (Juba, S., and Volkov, A., 2019)
is used to store the application data such as users, pass-
words and computation results. It is a well-proven tool
with a very powerful query engine. It is used jointly with
PostgREST application that creates a REST API on top of
PostgreSQL and avoids direct connections which are risky
in terms of cybersecurity. MinIO cloud storage (Johnston,
C., 2020) is used to upload, store and download the im-
ages. It is based on Amazon S3 technology which is

able to handle multiple large binary files downloads and
uploads simultaneously without any loss of performance.

Flow Layer Apache NiFi (Chanthakit, S., Keeratiwintakorn,
P., and Rattanapoka, C., 2019) is used to orchestrate back
and forth the delivery of data between the application and
the data layers. It provides a very user-friendly web inter-
face with multiple types of functional blocks (so-called
processors) that one can organize and connect together
to create more complex flows. One can then follow the
traces of the processing path directly in the web inter-
face, which is very practical to monitor the progress. The
underlying Kubernetes allows NiFi to run a single flow
in a cluster of multiple machines at the same time, thus
ensuring the availability of the product.

Application Layer OpenFaaS (Balla, D., Maliosz, M., and
Simon, C., 2020) is used to expose the Python scripts
for the wheel tread defect diagnosis as a web service
executable through a HTTPS request. First the Python
scripts and models are encapsulated into a Docker image
that is pushed to the OpenFaaS registry. Then OpenFaaS
manages the deployment of the Docker image and the
routing of requests. OpenFaaS is also increasingly used
in the field of Machine Learning (Jang, R-Y., Lee, R.,
Park, M.-W., and Lee, S.-H., 2020). The underlying
Kubernetes allows OpenFaaS to automatically scale up
the number of deployed Docker images to smartly adapt
the computational power to the actual quantity of requests.

Presentation Layer The Ionic (Yusuf, S., 2016) software
development kit is used to develop the user app. The user
interface is built as a Progressive Web App (PWA) using
the Angular framework jointly with web technologies
such as CSS and HTML5. The use of PWA technology
allows the mobile app to run both on mobile and web
devices (Biørn-Hansen, A., Majchrzak, T. A., and Grønli,
T.-M., 2017). The app communicates through classical
HTTPS GET and POST requests: with MinIO to post the
images and with PostgREST API to get app parameters
and computation results.

The main use-case scenario, presented Figure 4, is the follow-
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Figure 4. Industrialized architecture of the wheel tread diagno-
sis framework: four-layer stack with main use-case scenario.

ing: (1) a new image is posted by the maintainer from the user
app to MinIO, (2) NiFi takes the image from MinIO, (3) NiFi
posts the image to the OpenFaaS gateway to execute the wheel
tread defect diagnosis function on its content, (4) OpenFaaS
responds to the request with the results of the computation, (5)
NiFi inserts the results into the PostgreSQL database through
the PostgREST API, and (6) computation results are retrieved
by the app and presented to the maintainer (and to the en-
gineer) in the user interface according to the usage profile.
The impact of these results on the maintenance business are
presented in the following section.

3. RESULTS

This section details the results of the proposed CNN approach
to the different specialized tasks to diagnose wheel tread de-
fects and estimates their expected performance.

3.1. Defect Location Performance (DD-Loc)

The defect location module is developed with the MRO dataset.
Figure 5 shows the location prediction error distribution scored
as the difference between the X and Y coordinates indistinctly.
This result shows that the prediction error is centered around
the target because there is no bias toward the left/right or
up/down. The uncertainty is of 9.5 px, which corresponds to
12.66% of the image size.

3.2. Physical Size Performance (DD-Phy)

The physical size prediction module is also developed with
the MRO dataset. Figure 6 shows the error distribution scored
as the difference between the width and the height indistinctly.
This result shows that the error is sharply centered around the
target. The uncertainty of the prediction is of 6.2 mm.

Figure 5. Histogram of the defect location prediction error.
The 68% confidence interval SD (i.e., 1 standard deviation
under the normality assumption) indicates the uncertainty.

Figure 6. Histogram of the physical size prediction error. The
68% confidence interval SD (i.e., 1 standard deviation under
the normality assumption) indicates the uncertainty.

3.3. Defect Classification Performance (DC, ✓DC)

The classification module that scores the defect type mem-
bership probabilities (DC) is trained with the MRO dataset,
and the threshold module that discretizes the result (✓DC) is
adjusted with the ENG dataset. Figure 7 shows the resulting
classification metrics. Note that two potential work points
can be identified in the diagram. Their characteristics are
described as follows:

• Conservative work point (CWP, ✓DC = 0.35): minimize
false negatives. With a lower threshold the system yields
many potential failure candidates so that the risk of miss-
ing a problem is kept low, which is especially important
from a safety perspective. The accuracy is higher (0.75)
for this configuration.

• Eager work point (EWP, ✓DC = 0.7): minimize false
alarms. With a higher threshold the system yields fewer
potential failure candidates so the system increases its pre-
cision (around 0.3). In this configuration, the system is-
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Figure 7. Macro-averaged Defect Classification metrics: accu-
racy, precision, and recall. Results are shown along with the
probability discretization threshold ✓DC . Two potential work
points are identified.

sues “defect absence” labels whenever all the defect-type
probabilities are low, thus enabling it to detect anoma-
lies in compliance with the ISO 13374 international stan-
dard (ISO, 2003), i.e., operating as a dichotomic function.

Figure 7 is a kind of Receiver-Operating Characteristic curve,
showing more than two key performance indicators. Note that
if the threshold ✓DC that operates on the vector of defect type
probabilities is raised even further (beyond the Eager Work
Point), the system is unable to raise any alarm as the required
minimum probability values get close to 1.0, and therefore the
precision and recall classification metrics drop because they
both depend directly on the True Positives of the confusion
matrix. Their expected “inverse” behavior is clearly observed
at ✓DC = 0.45, when the two curves cross. At that point, the
system weighs equally the effect of False Positives and False
Negatives. In terms of business impact, the priority criteria of
the customer ultimately lead the performance tuning process.

Also note that the accuracy performance indicator is not reli-
able in this imbalanced data scenario, as the system might be
biased toward the majority defect type (i.e., RCF), so further
operational context is necessary for the evaluation. In the next
section, these additional criteria are considered to give a better
view of the actual expectations that this proposal provides.

3.4. Engineering Assessment Performance (EA)

This is probably the most decisive module of the system be-
cause it provides the actionable feedback in the form of “go -
warning - stop” label statements. It is a purely task learning
block developed with the ENG dataset. It is built with two of
the fully-connected layers of the CNN, yielding a multilayer
perceptron architecture. The resulting hidden embedding is
arbitrarily set to 10 units (slightly greater than the input di-
mensionality built with the outputs of the former modules)
with Dropout, which will prevent overfitting and ensure that

Table 3. Engineering Assessment performance focused on
potential SAF according to different work scenarios: MAC
logic rules and conservative/eager work points (CWP/EWP).

Probability No MAC MAC + CWP MAC + EWP
p(SAF |stop) 0.5 0.34 0.36
p(SAF |warn) 0.32 0.4 0.32
p(stop) 0.08 0.96 0.47
p(warn) 0.92 0.04 0.53
p(SAF ) 0.33 0.34 0.34
p(SAF ; ENG) 0.37 0.98 0.64

the network automatically finds its optimum expressiveness.
In addition, this EA module may eventually apply a series
of logical rules known as the minimum acceptance criteria
(MAC), which are conservative in nature, to guarantee that
certain critical limits are never exceeded.

For the design of this module, its performance in the following
three configurations is taken into consideration: no MAC rules,
MAC rules with the conservative work point, and MAC rules
with the eager work point. Table 3 shows the performance
results in probabilistic terms derived from the confusion ma-
trices, and focusing on the potential service-affecting failures
(SAF), which are the critical situations identified by the engi-
neering office (i.e., a “stop” label in the ground truth).

This analysis clearly shows the different operating modes:
the purely data-driven scenario (i.e., no MAC) is strongly
biased toward issuing warning results (just like the majority
of the dataset), the conservative scenario is strongly biased
toward raising alarms, and the eager scenario is balanced.
However, the probability of actually detecting the SAF, which
is calculated with the law of total probability, see Eq. (1), is
almost the same in all scenarios. Note that the system does
not report any “go” result, which may be reasonable because
the maintenance staff only take pictures if they suspect the
presence of an incipient defect.

p(SAF ) =
X

p(SAF |diagnosis) · p(diagnosis)

p(SAF |stop) · p(stop) + (SAF |warn) · p(warn)
(1)

In the light of this inconclusive result where all the approaches
yield a probability around 0.34 to detect the potential SAF, the
contribution of the engineering team will be determining to
break the tie.

3.4.1. Engineering Verification and Validation

Whenever the engineering team checks a picture, it always
detects the potential SAF. At present, the engineers manually
review the whole stream of images, which takes a lot of person-
hour resources and this workload may hinder the completion
of other activities. To add value to the overall maintenance pro-
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cedure reducing the weight of this engineering validation task,
this work proposes that only the pictures automatically rated
with the “stop” diagnosis are to be manually checked by the en-
gineering office. In consequence, p(SAF |stop; ENG) = 1,
and the probability of detecting the SAF increases in different
degrees according to the given design strategy. The bottom
row of Table 3 shows the impact of this new criterion. These
results indicate that with the eager approach (along with the
MAC rules) the engineering team can reduce its current work-
load more than 50%, and retain a SAF detection rate of 64%.
This is regarded as the optimum trade-off between the com-
plete manual workload and the complete automated approach,
potentially resulting in the best pay off for the adoption of the
proposed system.

3.5. Confidence Index Performance (CI)

The Confidence Index informs that the system is self aware of
the reliability of its predictions. This indicator is developed
with the ENG dataset trough a heuristic function that deter-
mines the result of this quality test. This function operates
on the vector of probabilities of the preceding DC module,
and applies an Active Learning approach known as an “acqui-
sition function” that determines the degree of uncertainty in
the classification (for all the defect types D) through its en-
tropy (Settles, B., 2010). The resulting value is finally scored
against a maximum threshold ✓CI to obtain the binary-valued
CI, shown in Eq. (2).

CI =

 
�
X

8d2D

p(d) · log (p(d))

!
< ✓CI (2)

Figure 8 displays the distribution of the DC entropy for the
ENG data, related to their diagnosis labels. Note that for all
the instances that display an entropy lower than ✓CI = 1.2,
the rate of the “stop” diagnostic (i.e., the potential SAF) over
the other labels in each bin is considerably greater than the
rate over the entropy value of 1.2. Thus, this leads to the
conclusion that ✓CI = 1.2 is the adequate threshold for the
Confidence Index.

The engineering office capitalizes the maintenance expertise,
understands the limitations of the proposed CNN system, and
the CI indicator can be used to drive their decisions, among
other functional criteria. The following section is dedicated to
this latter point.

4. DISCUSSION

This section elaborates upon the contextual behavior of the
wheel tread defect diagnosis system described in this work.

Figure 8. Histogram of the DC entropy for the ENG data with
respect to their diagnosis labels.

4.1. Understanding the Learned CNN System

In this multi-label setting where many defects may be rep-
resented in the same image, learning the templates for ar-
rangements of objects becomes rapidly intractable because of
the combinatorial explosion in the number of features to be
stored (Ricci, M., Kim, J., and Serre, T., 2018). One of the
main criticisms generally attributed to neural networks, and
thus to CNN’s in particular, is their lack of interpretability or
explainability, what is also known as a “black box” interface
behavior (Fong, R., and Vedaldi, A., 2017). The following
two sections delve into the internal working details of the
learned CNN system in order to shed some light into their
cumbersome operations, revealing the desirable properties
of compositionality and class discrimination that CNN’s are
expected to exhibit (Zeiler, M. D., and Fergus, R., 2014).

4.1.1. Image Filters

A CNN is fundamentally characterized by the adapted design
of its filters, which get convoluted with the input image in order
to highlight interesting patterns, just like the human visual
system (Eickenberg, M., Gramfort, A., Varoquaux, G., and
Thirion, B., 2017). In a sense, these filters are like templates
that match specific motifs in the pictures, especially the ones
found in the first layer of a vision system (Erhan, D., Bengio,
Y., Courville, A., and Vincent, P., 2009), where the receptive
field, i.e., the size of the region in the input that produces
the feature, is minimum and corresponds to the size of the
filter (Le, H., and Borji, A., 2017). It is widely accepted
that these first functions learn edge-detecting Gabor filters,
i.e., linear functions used for texture analysis that highlight
a specific frequency content in a specific selective direction.
Therefore, analyzing them at the pixel level reveals relevant
information about the captured knowledge (Bach, S., Binder,
A., Montavon, G., Klauschen, F., Müller, K.-R., and Samek,
W., 2015).

The outputs of the filters correspond to specific locations of
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Table 4. First layer of learned image filters (C1) and their impact on a sample image showing two defects (SPALL and RCF).

Filter

Output

Function Up curve (None) Down curve Up/down curve Vertical line,
right curve

Vertical line,
right/left curve

Defect SPALL (None) SPALL SPALL SPALL, RCF SPALL, RCF

interest whenever their activation is high, thus creating a spa-
tial feature detector (Zeiler, M. D., and Fergus, R., 2014).
And given that these patterns can be observed in any place
around the picture, their dependence on individual units is
reduced, thereby improving the network generalization per-
formance (Morcos, A. S., Barrett, D. G., Rabinowitz, N. C.,
and Botvinick, M., 2018). Table 4 shows the first filters that
the system has learned (i.e., layer C1) and the impact of their
design on a sample image that contains two tread defects
(SPALL and RCF). As it can be seen, each of the six input
filters learns a particular detail of the degradation: some filters
learn curves, others learn straight lines, and even two of them
learn both features, illustrating the multifaceted character of
the related neurons (Nguyen, A., Yosinski, J., and Clune, J.,
2016). In most cases, their output can then be directly related
to a specific type of defect, which gives them a kind of latent
representation aligned with human-interpretable semantic con-
cepts (Bau, D., Zhou, B., Khosla, A., Oliva, A., and Torralba,
A., 2017). However, it is the entire space of activations, rather
than the individual units, that contains the bulk of the semantic
information (Szegedy, C., Zaremba, W., Sutskever, I., Bruna,
J., Erhan, D., Goodfellow, I., and Fergus, R., 2013). Finally,
all these features get blended into the layers that follow to
accomplish some task-driven goal.

4.1.2. Defect Manifold

This section evaluates the separability of the spatial distribu-
tion of the defects in the latent space (Chen, Z., Bei, Y., and
Rudin, C., 2020). To see how the CNN architecture internally
discriminates the data and manages the inter-defect knowl-
edge (Mahendran, A., and Vedaldi, A., 2015; Simonyan, K.,
Vedaldi, A., and Zisserman, A., 2013; Zhou, B., Khosla, A.,
Lapedriza, A., Oliva, A., and Torralba, A., 2015) as well as the
intra-defect knowledge through a hierarchical and composi-
tional pipeline (Wei, D., Zhou, B., Torralba, A., and Freeman,
W. T., 2015), Figure 9 shows the scattering of the instances on

Figure 9. Self Organizing Map of the FC4 layer embedding
for the defect classification task showing the main defect types:
flat, spall, and RCF.

the penultimate adjustable layer FC4 for the defect classifica-
tion task using a Self Organizing Map (SOM) (Kohonen, T.,
1990). The SOM is an unsupervised non-linear transformation
technique based on competitive learning that produces a dis-
cretized representation of the data preserving its topological
properties, i.e., its similarity clusters. In PHM it has been used
for anomaly detection and fault location purposes (Tian, J.,
Azarian, M. H., and Pecht, M., 2014; Zhao, W., Siegel, D.,
Lee, J., and Su, L., 2013), also in railway systems (Alessi, A.,
La-Cascia, P., Lamoureux, B., Pugnaloni, M., and Dersin, P.,
2016).

In the scenario presented in this work, the SOM shows how
the CNN learns to separate the three major defect prototypes:
RCF, flat, and spall. In particular, it can be observed that
the system learns to differentiate straight-line patterns (e.g.,
RCF), which are clustered to the right, from rounded patters
(i.e., spall and flat), which are clustered to the left. In this
latter categorization, the overlap illustrates that the curvy-type
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Figure 10. Engineering Assessment sensitivity analysis
through the profile method for the “stop” diagnosis statement.
The inputs have been standardized.

patterns seem to follow a hierarchical structure over the de-
fects (Alsallakh, B., Jourabloo, A., Ye, M., Liu, X., and Ren,
L., 2018). Note that only the last layer of the CNN deals
with this manifold representation, and the eventual classifica-
tion thus needs to be attained with linear discriminators, which
seems to be adequate based on the lower-dimensional represen-
tation provided by the SOM. However, a proper expressiveness
analysis with an additional hidden layer, thus creating a multi-
layer perceptron, could be a more general solution (Simard, P.
Y., Steinkraus, D., and Platt, J. C., 2003), following the univer-
sal approximation theorem for neural networks (Cybenko, G.,
1989; Pinkus, A., 1999).

4.2. Engineering Assessment Sensitivity

The Engineering Assessment module is arguably the most
critical point in the system because it provides the actionable
feedback to the maintainer. To understand its inner working
mechanism through the impact of the input variables (i.e., the
defect type probabilities and the physical size of the defect)
on the output diagnosis, Figure 10 displays the result of a
sensitivity analysis based on the profile method (Shojaeefard,
M. H., Akbari, M. Tahani, M., and Farhani, F., 2013) for the
critical “stop” diagnostic.

Assuming that the importance of a variable is driven by the
dynamic range of the output, it is shown that the physical size,
the RCF, and the CLUS probabilities lead this ranking. In
addition, the physical size and the RCF probability variables
are strongly negatively correlated with the “stop” probability
diagnosis. The RCF is a type of defect that by itself does not
directly halt the railway service, so this negative relationship
makes sense. The physical defect, however, does not reason-
ably follow this criterion, but its impact is highly correlated
with the RCF and this is what the EA module has ultimately
learned. Finally, the CLUS probability is strongly positively
correlated with the diagnosis, which makes perfect sense be-

Figure 11. Examples of image modifications: normal picture,
blur, glare, noise, pixelation, and shine.

cause this is a critical defect type.

4.3. Robustness to Feature Corruption

Machine learning solutions, including neural networks and
Deep Learning, may exhibit unexpected instability on sim-
ple perturbations. Therefore, they are at risk of being tricked
by adversarial instances, which are intentionally corrupted
data that lead the system to output incorrect results with high
confidence (Goodfellow, I. J., Shlens, J., and Szegedy, C.,
2015). Moreover, image processing applications are especially
targeted by these attacks because some of these small perturba-
tions are difficult to detect as they exploit edge cases. Methods
such as histogram equalization, see Section 2.2.1, are helpful
to prevent them (Hendrycks, D., and Dietterich, T., 2019), but
careful attention is needed because cybersecurity in railways
is an area that has attracted a lot of interest recently due to an
increasing number of denial-of-service attacks (Masson, É.,
and Gransart, C., 2017).

A useful approach to build a defense against these adversarial
attacks is to construct a predictor that is robust to the deletion
of features at test time (Globerson & Roweis, 2009). In this
sense, the Engineering Assessment module already features
a Dropout layer after the embedding, see Section 3.4. In the
defect diagnosis scenario based on smartphone pictures pre-
sented in this work, the proposed system should be robust
to artificial image modifications that could be used in an ad-
versarial attack, including effects like blurring, flash glare,
etc. Figure 11 shows some typical examples of these kind
of tweaks, and Table 5 evaluates their impact on the final
diagnosis.

This analysis of feature perturbations shows that the proposed
system exhibits a fairly good overall robustness to potential im-
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Table 5. Image modifications and their impact to the proposed
defect diagnosis system.

Filter/Effect Size (mm) Defects Diagnosis CI
Normal 55 FLT Stop 1
Blur 54 None Warning 0
Glare 61 FLT Stop 1
Noise 53 None Warning 1
Pixelation 68 FLT Stop 0
Shine 53 FLT Stop 1

age corruptions, including the common shine and glare effects
produced by the flash. Robustness to pixelation also indicates
that the resolution of the smartphone camera is sufficient. Nev-
ertheless, the blur and noise perturbations cause the system to
fail, as a warning signal is issued instead of the expected “stop”
statement. These situations thus need to be avoided through
the recommendation of taking still photographs in a dust-free
environment.

4.4. Pragmatic Project Management

The development of an industrial Deep Learning solution en-
tails having to deal with many different components, and this
leaves the door open to many different potential approaches.
On the data acquisition stage, a Computer Vision engineer
will probably argue that the system improvement lies on the
quality of the pictures, and these smartphone images do have
focus issues, uneven lighting conditions, different distances to
the wheelset defect of interest, etc. However, when the input
pictures are taken at different scales, the CNN will extract fea-
tures at different scales (He, K., Zhang, X., Ren, S., and Sun,
J., 2015), so these variations should not be the primary point
of concern. Moreover, it has been shown that the resolution of
the camera (leading to a pixelation effect) does not critically
impact the diagnosis.

What has been observed is the tight dependence on labeled
data to develop such a system. The annotation process is te-
dious, and fatigue builds up after some time. In this work,
a standalone computer application has been developed to it-
erate the dataset and record the expertise, which has been
provided by one single expert per instance. A minimum inter-
annotator agreement rate is not strictly necessary for a fea-
sible tagging of maintenance data (Hastings, E. M., Sexton,
T., Brundage, M. P., and Hodkiewicz, M., 2019). However,
further progress in this line should be provided by unsuper-
vised or semi-supervised approaches, which reduce the amount
of repetitive human effort (Bengio, Y., 2009), like the Meta
Pseudo Labels approach (Pham, H., Dai, Z., Xie, Q., Luong,
M.-T., and Le, Q. V., 2020), where a teacher network is trained
to generate pseudo labels on unlabeled data to train a student
network, and adapts with the performance of the student net-
work on the labeled dataset. Additionally, a strategy to reduce
the bias in the data (Kim, B., Kim, H., Kim, K., Kim, S., and
Kim, J., 2019) and the noise in the labels (Lee, K.-H., He, X.,

Zhang, L., and Yang, L., 2018) should also be explored.

On the learning stage, the proposed CNN design displays zero
bias error throughout the different modules, and any tweak
beyond this neural design has led to the appearance of some
average loss (keeping the same uncertainty). Therefore, as
it is, the described approach shows an optimum complexity
for this defect diagnosis problem, despite the obtained results
are far from perfect. However, it is not clear how a different
architecture might be of help in this scenario. There are some
approaches that suggest using smaller convolutional filters
(3x3) along with a network depth of 16 to 19 layers (Simonyan,
K., and Zisserman, A., 2015), keeping a constant computa-
tional budget for the industrialization (Szegedy, C., Liu, W.,
Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Van-
houcke, V., and Rabinovich, A., 2015), using kernels within
the convolution function (Ammann, O., Michau, G., and Fink,
O., 2020), or dropping the pooling layers due to their seldom
attributed destructive role (Springenberg, J. T., Dosovitskiy,
A., Brox, T., and Riedmiller, M., 2015). The Deep Learning
field is in full blossom at present, and potentially many differ-
ent solution approaches to the problem will be developed, so
further research is required to get an optimal solution and to
settle into the plateau of general productivity. Ultimately, the
obtained solution as it is could be used to train a new genera-
tion of networks in a self-distillation manner and push the test
performance a bit further (Zhang, L., Song, J., Gao, A., Chen,
J., Bao, J., and Ma, K., 2019).

Alternatively, the current technology may also be used with
a different perspective: instead of the proposed modular ap-
proach, a truly multitask environment could also be explored,
because a single network can manage to do classification and
regression tasks concurrently (Zhou, B., Khosla, A., Lapedriza,
A., Oliva, A., and Torralba, A., 2015; Sermanet, P., Eigen, D.,
Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y., 2013).
What is more, the application of a CNN at multiple locations
in a sliding window fashion (instead of the full image input)
has also been reported to be successful (Sermanet, P., Eigen,
D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y., 2013;
Oquab, M., Bottou, L., Laptev, I., and Sivic, J., 2014). In
addition, the domain transfer between a rich image environ-
ment like ImageNet and the defect problem at hand may also
be of help to learn better feature representations and improve
the system generalization (Salman, H., Ilyas, A., Engstrom,
L., Kapoor, A., and Madry, A., 2020; Kornblith, S., Shlens,
J., and Le, Q. V., 2019). Furthermore, the consideration of
synthetic data including adversarial images (Ilyas, A., San-
turkar, S., Tsipras, D., Engstrom, L., Tran, B., and Madry, A.,
2019), which is a popular approach to train Deep Learning
models for Computer Vision (Nikolenko, S. I., 2019), is a
useful resource to enhance the robustness of the system. And
in the line of continuous improvement, if the user feedback is
included with respect to the presented diagnosis results, the
system can also exhibit some sort of enhanced evolution as
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new data is processed.

Finally, regarding the industrialization, the main limitation of
the proposed architecture is that the Python models used for
the whole machine learning process are included in a Docker
container image that is almost immutable, hence dynamic
updates of the models are cumbersome. An upgrade to the
proposed solution could include a kind of model registry that
is periodically called to download new versions of the models,
which would be developed by the data scientist in the loop
following a continuous improvement procedure driven by the
Return on Experience of the product, including new features,
bug fixes, patches motivated by incorrect predictions, etc.

5. CONCLUSION

The detection of railway wheel tread defects on raster picture
data is a daunting task that involves many different levels of
analysis. This paper presents an integrated solution based on
many Convolutional Neural Networks that locate the dam-
aged areas in the images, estimate the physical size of the
shown defects, and assess their type and severity. This pro-
posal describes a task-division approach that helps understand
the caveats and pitfalls of the predictive value chain. The
results indicate that almost half the current engineering effort
dedicated to manually checking the potential issues can now
be automated, thus reducing the lead time to take a timely
maintenance action, and ultimately optimizing the activities
of the workforce.

The future work that is currently envisaged may further deal
with the following topics:

• The explicit consideration of a “good” condition class
to better understand the whole image degradation spec-
trum of the wheel tread defects. Although in the current
scenario this is not strictly necessary because the mainte-
nance staff already applies their criteria to take a picture,
if this additional assessment was managed as a separate
anomaly detection step prior to the described analysis, the
whole pipeline would introduce a kind of double-check
procedure.

• The collection of actual feedback from the field and the
evaluation of the value added by the diagnosis. The Ap-
pendix shows some additional examples obtained with
the minimum-viable product that is derived from the in-
dustrialization of the proposed solution. System interface
feedback is also included in the continuous improvement
of this online tool.

• The utility expansion to other types of wheels. Despite the
proposed solution is tailored to steel railway wheelsets,
the same technology can be applied to other types of
wheels because CNNs ultimately tend to focus on their
texture (Hermann, K. L., Chen, T., and Kornblith, S.,
2020). For example, rubber-based tires would display
patterns of deflation, punctures, tears or bulges on the

sidewalls, etc.
• In terms of safety, the proposed modular system is ad-

vantageous because the EN 50126-1 international railway
standard specifies that such systemic hierarchy enables
the assessment of subsystem interactions (CENELEC,
2017), and this is a prerequisite to understanding its over-
all limitations.

• In terms of security in a Deep Learning environment for
Computer Vision, further robustness to adversarial images
should also be studied, in addition to other cybersecurity
considerations. In this sense, technologies like the Digital
Twin enables virtual representations of components and
systems (Moyne, J., Balta, E. C., Kovalenko, I., Faris, J.,
Barton, K., and Tilbury, D. M., 2020), which can help
detect the presence of anomalous behaviors driven by
attacks.
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APPENDIX

Additional examples of actual wheel tread defects along with
their diagnostics are shown in Figure 12 and Figure 13.

Figure 12. Picture of a mild spall defect.
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Figure 13. Picture of a critical flat defect.
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ABSTRACT

This work explores how the causality inference paradigm may
be applied to troubleshoot the root causes of failures through
language processing and Deep Learning. To do so, the causal-
ity hierarchy has been taken for reference: associative, inter-
ventional, and retrospective levels of causality have thus been
researched within textual data in the form of a failure analysis
ontology and a set of written records on Return On Experi-
ence. A novel approach to extracting linguistic knowledge has
been devised through the joint embedding of two contextual-
ized Bag-Of-Words models, which defines both a probabilistic
framework and a distributed representation of the underlying
causal semantics. This method has been applied to the main-
tenance of rolling stock bogies, and the results indicate that
the inference of causality has been partially attained with the
currently available technical documentation (consensus over
70%). However, there is still some disagreement between
root causes and problems that leads to confusion and uncer-
tainty. In consequence, the proposed approach may be used as
a strategy to detect lexical imprecision, make writing recom-
mendations in the form of standard reporting guidelines, and
ultimately help produce clearer diagnosis materials to increase
the safety of the railway service.

1. INTRODUCTION

Natural Language Processing (NLP) provides an effective ap-
proach for improving the collection and analysis of text-based
maintenance data, and eventually enable accurate decision-
making (Brundage, M. P., Weiss, B. A., and Pellegrino, J.,
2020). For example, in the railway maintenance business,

Alexandre Trilla et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

axle bearings are some of the most critical rolling stock com-
ponents subject to strong safety constraints. In consequence,
many conservative overhaul actions are scheduled preventively
in the maintenance plan, which contains a lot of technical doc-
umentation about these mechanical assets. The completion
of these actions, in turn, generates useful practical feedback
on the shop floor following the inspection of the parts, which
seeks degradation signals and compiles them in written main-
tenance sheets. Additionally, unexpected failures like grease
leaks, hot axleboxes, or abnormal vibration records, get re-
ported in an issue tracking system to be then fixed correctively.
Considering all these environments together entails dealing
with a large amount of text data that is oftentimes manually
intractable, and NLP brings the automation potential to ex-
tract useful insights to advise the maintenance team, e.g., by
identifying the most probable underlying root cause to a given
problem. This approach is meant to increase the chances of
success to fix the issue, minimize the risk of a recurrent failure,
and thus maximize the availability of the fleet.

Interactive natural language interfaces help maintainers achieve
a higher success rate and a lower task completion time, which
lead to greatly improved user satisfaction (Su, Y., Awadal-
lah, A. H., Wang, M., and White, R. H., 2018). However,
many solutions require customization through the collabo-
ration between data scientists and domain specialists, and
each technical field poses its own challenges. In this sense,
Technical Language Processing (TLP) presents a holistic,
domain-driven approach, to use NLP in a technical engineer-
ing setting (Brundage, M. P., Sexton, T., Hodkiewicz, M.,
Dima, A., and Lukens, S., 2021). In TLP, maintenance docu-
ments like work orders are relatively small in size and contain
misspellings, domain-specific jargon, abbreviations, and non-
standard sentence structure. Therefore, to tackle this particular
context-dependent technical scenario, the field of causality is
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regarded as a direct description of what occurs when machines
degrade, and the root-cause analysis becomes the means to
obtain a reliable troubleshooting explanation for an abnormal
failure. In fact, linguistic representation, such as the one found
in TLP, is essentially a causal phenomenon (Stampe, D. W.,
2008).

Causality is traditionally stratified into a three-layer hierar-
chy (Pearl, J., 2019): association (i.e., plain correlation or
direction-free relationships), intervention (i.e., reasoning about
the effects of actions), and counterfactuals (i.e., retrospec-
tive reasoning). In turn, Causal Inference (CI) aims to draw
such detailed interpretations beyond mere associations from
observational data using statistical tools to infer relational
probabilities. CI distinguishes two broad classes of causal
queries: forward causal questions or the estimation of “ef-
fects of causes”, and reverse causal inference or the search for
“causes of effects” (Gelman, A., and Imbens, G., 2013). CI
can also be conceptualized as a multitask learning problem
with a set of shared layers among the factual and counterfac-
tual outcomes (Alaa, A. M., Weisz, M., and van der Schaar,
M., 2017). Similarly, decision-making is about predicting
counterfactuals (Hartford, J., Lewis, G., Leyton-Brown, K.,
and Taddy, M., 2017), and CI can potentially lead to more
informed decisions (Zheng, M., Marsh, J. K., Nickerson, J. V.,
and Kleinberg, S., 2020). The difficulty here is that all these
probabilistic quantities are not directly available in observa-
tional/factual data, so the CI problem needs to be converted
into a domain adaptation problem to figure out the mecha-
nisms that explain why observations occurred (Yao, L., Chu,
Z., Li, S., Li, Y., Gao, J., and Zhang, A., 2020).

Understanding causality is considered as one of the current
challenges for Machine Learning (ML) automation because
ML models are ultimately driven by correlations in the data,
and in general the causality implications of interest cannot
be derived from them (Ahmed, O., Träuble, F., Goyal, A.,
Neitz, A., Bengio, J., Schölkopf, B., Wüthrich, M., and Bauer,
S., 2020). Therefore, counterfactual explanations are gain-
ing prominence as a way to explain the decisions of a ML
model (Barocas, S., Selbst, A. D., and Raghavan, M., 2019).
The causality hierarchy, and the formal restrictions it entails,
explains why ML systems can attain CI as long as they model
the data beyond mere observed associations. Therefore, learn-
ing causal relations can be transformed into a supervised pre-
diction problem once the data labels indicate the causal direc-
tionality, whether explicitly or implicitly (Guo, R., Cheng, L.,
Li, J., Hahn, P. R., and Liu, H., 2020; Shalit, U., Johansson,
F. D., and Sontag, D., 2016). In this line of work, research in
ML and language understanding have recently found a great
deal of success using large neural networks, especially through
Deep Learning (DL) (Torfi, A., Shirvani, R. A., Keneshloo,
Y., Tavaf, N., and Fox, E. A., 2020; LeCun, Y. and Bengio, Y.,
and Hinton, G. E., 2015). These overparameterized and regu-
larized models constitute one of the most important ideas in

the recent history of statistics, along with CI (Gelman, A., and
Vehtari, A., 2020), and a straightforward way to learn causal
effects and counterfactual outcomes with DL is to learn repre-
sentations for features, i.e., to let the DL system automatically
discover the most effective way to represent the data directly
instead of hard-coding traditional language features. To this
end, DL-based word embeddings may provide an interesting
approach to represent linguistic causality (Li Y., and Yang T.,
2018; Hancock, J. T., and Khoshgoftaar, T. M., 2020).

Specifically, Word Embeddings (WE) are dense, fixed-length
word vectors, built using word co-occurrence statistics as per
the distributional hypothesis (Almeida, F., and Xexéo, G.,
2019). WE learn representations of high-level abstract con-
cepts of the kind humans manipulate with language, away
from the perceptual space, and they exhibit some geometric
relational properties (Bengio, Y., 2017), which can ultimately
be used to conduct lexical comparisons (Tan, L., Zhang, H.,
Clarke, C. L. A., and Smucker, M. D., 2015). Thus, this data
representation can be regarded as an approach to cognition
and artificial intelligence (Maguire, P., Mulhall, O., Maguire,
R., and Taylor, J., 2015). Moreover, WE are computationally
efficient (Levy, O., and Goldberg, Y., 2014), and therefore they
need less data to successfully train statistical models (Goth,
G., 2016), as is the case in TLP. Regarding semantics, WE
also expose word senses (Yaghoobzadeh, Y., Kann, K., Hazen,
T. J., Agirre, E., and Schütze, H., 2019), but they may ex-
perience the meaning conflation deficiency that arises from
representing a word with all of its possible meanings as a sin-
gle vector (Camacho-Collados, J., and Pilehvar, M. T., 2018).
Nevertheless, WE constructed using arbitrarily contextualized
language have further improved representational performance,
possibly helping in the semantic disambiguation of machine
decay (Levy & Goldberg, 2014; Peters, M. E., Neumann, M.,
Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer, L.,
2018). In this line, WE also lead the way to process language
in Prognostics and Health Management (PHM) because they
display a high flexibility that is only attained by avoiding task-
specific engineered features (Fink, O., Wang, Q., Svensén, M.,
Dersin, P., Lee, W.-J., and Ducoffe, M., 2020).

The troubleshooting objective pursued in this article is inter-
esting for the PHM community to enhance the maintenance
business (Leao, B. P., Fitzgibbon, K. T., Puttini, L. C., and de
Melo, G. P. B., 2008). Realizing a comprehensive monitoring
of system data, a timely detection of system abnormalities,
and troubleshooting are all worthy goals, and the recent ex-
ponential growth of PHM patents is a point of support for
these advantages (Liu, Z., Jia, Z., Vong, C.-M., Han, W., Yan,
C., and Pecht, M., 2018). Current troubleshooting tools rely
on fault tree analysis, extensive electronic manuals or expert
system methods to assist the maintainer in identifying faulty
system components (Naveed, A., Li, J., Saha, B., Saxena, A.,
and Vachtsevanos, G., 2012). The approach presented in this
paper combines these complementary methods through the
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exploitation of technical text data from different environments,
which is aligned with the scope of PHM (Brundage, M. P.,
Sexton, T., Hodkiewicz, M., Dima, A., and Lukens, S., 2021).

This work applies the CI paradigm to PHM using DL through
a contextualized WE to better troubleshoot the root causes
of failures and help improve their diagnostics. To do so, it
exploits two different linguistic environments where causality
is expected to be observed. On the one hand, an ontological
reference framework based on a Failure Mode, Mechanism,
and Effect Analysis (FMMEA), which provides a scholarly
structure of causality driven by degradation. On the other hand,
an actual record on Return On Experience (ROX), the data of
which have been explicitly written for the purpose of explain-
ing the root causes of the reported failures. In both environ-
ments, several experts inherently identify which properties of
the observations describe spurious correlations unrelated to the
causal explanation of interest, and which properties represent
the phenomenon of interest, i.e., the stable invariant correla-
tions (Arjovsky, M., Bottou, L., Gulrajani, I., and Lopez-Paz,
D., 2019). In this controlled analysis dealing with experimen-
tal data, invariant correlation implies causation. Therefore,
DL and WE should be adequate tools to extract the textual
regularities that represent causality (Mitrovic, J., McWilliams,
B., Walker, J., Buesing, L., and Blundell, C., 2021), and thus
they may be used to rate the level of agreement between CI
theory and practice for troubleshooting. Specifically, a proba-
bilistic Causality-Contextualized WE (CCWE) is trained with
the ROX data, and the FMMEA-based failure ontology data
is then used to evaluate the alignment between the two en-
vironments, which is expected to be reasonably high. This
hypothesis is validated experimentally using the technical doc-
umentation related to rolling stock bogies. Figure 1 shows a
diagram of the proposed analysis workflow for clarity.

The article is organized as follows: Section 2 describes the
data, i.e., the bogie FMMEA and ROX records, the way the
ontology has been created, and the strategy to build a CCWE.
Section 3 conducts a graphical analysis of the whole failure
network to discover structurally interesting points, a proba-
bilistic analysis of the ROX-based CCWE to assess the causal
relationships in practice, and the integration of the two per-
spectives, including a distributed representation of causality.
Section 4 discusses the limitations of the proposed approach
through the comparison with an alternative spectral embed-
ding and the modeling of textual sequences. Finally, Section 5
concludes the manuscript showing how the concept of causal-
ity in bogie failures has been partially attained with the current
technical documentation, and how it may be improved with
the approach presented in this work.

2. MATERIALS AND METHODS

In this section, a FMMEA for bogies is used to build a failure
ontology of their degradation, and a text database of ROX data

Training

Inference

ROX

FMMEA

CCWE

𝑝(𝐹𝑀𝑀𝐸𝐴;𝑅𝑂𝑋)

Figure 1. Diagram of the probabilistic analysis workflow per-
formed in this work, which evaluates the level of agreement
between two causality-rich environments: the Failure Mode,
Mechanism, and Effect Analysis (FMMEA) on the theoretical
side, and the Return On Experience (ROX) on the practical
side. A Causality-Contextualized Word Embedding (CCWE)
is developed to model and evaluate the relevant causal linguis-
tic regularities.

is used to build a practical CCWE.

2.1. Failure Ontology

The FMMEA is an efficient tool to analyze system and com-
ponent failures, and identify their main causes or mechanisms
of failure (Atamuradov, V., Medjaher, K., Dersin, P., Lam-
oureux, B., and Zerhouni, N., 2017). Knowledge of the failure
mechanisms that are likely to produce the degradation that can
lead to eventual failures in the monitored assets is important
to succeed in the implementation of a PHM solution (Mathew,
S., Das, D., Rossenberger, R., and Pecht, M., 2008). There-
fore, the FMMEA is one of the tools used for the effective
assessment of risk, and so it is a vital part of an organization’s
strategic management. However, it is costly to produce and
hardly reusable due to its text-based description in natural
language (Ebrahimipour, V., Rezaie, K., and Shokravi, S.,
2010). To overcome this situation, an ontology-based solution
is advised to extract and reuse FMMEA knowledge from the
available text documents (Rehman, Z., and Kifor, C. V., 2016).

An ontology is a network of standard concepts and terms in a
given domain that shows their properties and the relations be-
tween them to represent knowledge (Ebrahimipour, V., Rezaie,
K., and Shokravi, S., 2010). There is a growing interest in the
potential value of ontologies to codify structures of meaning
for maintenance (Sexton, T., Hodkiewicz, M., Brundage, M. P.,
and Smoker, T., 2018). To this end, TLP is the way to go to au-
tomatically extract valuable insights regarding the many facets
of reliability, maintenance, and planning (Navinchandran, M.,
Sharp, M. E., Brundage, M. P., and Sexton, T. B., 2019). The
ontology augments human decision-making by relying on di-
versified information (Polenghi, A., Roda, I., Macchi, M., and
Pozzetti, A., 2022), especially when real-life maintenance data
is used in its design. Conforming to the vocabulary that is
widely used by maintenance professionals and practitioners is
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a major catalyst for widespread acceptance and uptake (Karray,
M. H., Ameri, F., Hodkiewicz, M., and Louge, T., 2019). Ad-
ditionally, to tackle CI with the ontology, its topology needs
to represent a Structural Causal Model (SCM) framework be-
cause its organization is essential for performing causality
learning tasks such as counterfactual reasoning (Schölkopf, B.,
Locatello, F., Bauer, S., Ke, N. R., Kalchbrenner, N., Goyal,
A., and Bengio, Y., 2021). Explicitly, a SCM consists of a set
of explanatory variables, outcome variables, and unobserved
variables, connected by a set of functions that determine their
relational values (Pearl, J., 2009).

For the analysis of bogie failures framed in this work, a FM-
MEA approach is recommended to reduce blindness, subjec-
tivity, and over-reliance on the personal experience (Li, Y.-H.,
Wang, Y.-D., and Zhao, W.-Z., 2009). And for the successful
application of CI, assumptions about the mechanisms underly-
ing the observed data also need to be specified (Sharma, A.,
and Kiciman, E., 2020). To this end, the approach proposed by
Atamuradov and colleagues is taken for reference in this work,
and thus its contents are not questioned here (Atamuradov,
V., Medjaher, K., Dersin, P., Lamoureux, B., and Zerhouni,
N., 2017). Their failure analysis defines three fields that are
described as follows, along with the related causal structure:

Failure Mechanism Fundamental manner in which a com-
ponent can fail ! Unobserved variable that is the Root
Cause of an observed Problem, e.g., fatigue or wear

Failure Mode Manner by which a failure is physically ob-
served, although in certain contexts, the Failure Effect (i.e,
the impact of the Mechanism) can also be found in this
field ! Outcome variable that represents a Problem that
is experienced, e.g., surface defects, rotation difficulty, or
reduction of suspension effect

Component Explanatory variable that describes the context
of a Problem, e.g., wheel or gearbox

Components are related to Failure Modes, which in turn are
then related to Failure Mechanisms. If these relationships
are likened to an ISO 13379 standard causal tree with faults,
symptoms, and descriptors (ISO, 2003), the resulting failure
ontology is shown in Figure 2, where the directed edges in-
dicate the (assumed) direction of causation (Imbens, G. W.,
2020).

2.2. Return On Experience

ROX is a holistic approach to understand and increase the
value of investments across customer, employee, and leader-
ship experience (PwC, 2019). It is strictly related to the First
Time Right management principle, which aims to minimize
the number of product issues that get past design release and
cause rework, leading to dissatisfied customers (Leuenberger,
H., Puchkov, M., and Schneider, B., 2013). Specifically, ROX
is a data-driven quality strategy that focuses on identifying
and eliminating the root cause of the problems and ensure

that the improvement is sustained (Smetkowska, M., and Mru-
galska, B., 2018). To this end, tagging and curating already
existing textual data can be a first step toward structuring
content (Sexton, T. B., and Brundage, M. P., 2019), but this
work goes beyond this step and processes data that have been
specifically written for the purpose of describing the causal
sources of the reported problems. Therefore, unlike regular
observational data, ROX records are hardly marred by selec-
tion biases, confounding factors, and other such weak points,
and thus they may be treated as experimental or interventional
data.

The ROX database of use in this work contains around 500
records written by many experts following a feasible collabo-
rative approach (Hastings, E. M., Sexton, T., Brundage, M. P.,
and Hodkiewicz, M., 2019). However, different technicians
rarely describe the same Problem in an identical manner or
register (Conrad, S., 2019). This leads to description inconsis-
tencies within the database and makes it difficult to categorize
issues or learn from similar causal relationships (Sharp, M.
E., Sexton, T. B., and Brundage, M. P., 2017). Therefore, a
statistics-based TLP approach is needed to put the focus on
factual data and strip grammatical artifacts, e.g., by filtering
out stop words, lemmatizing, etc. This provides a systematic
methodology to create computable knowledge (Sexton, T.,
Hodkiewicz, M., Brundage, M. P., and Smoker, T., 2018).

By definition, plain text data are intrinsically unstructured.
However, in the ROX database each record conducts a specific
troubleshooting analysis in isolation, and the causal connec-
tions are organized into the following fields:

Problem Subject title, description of the reported Failure
Mode, and details of its technical impact.

Root Cause Description of the Failure Mechanism of the
issue following an investigation, and the main reason of
non-detection.

Business context Strategic unit: trains, rail services, rail
control, and infrastructure.

System context Technical scope: air supply, passengers,
roof, door, and bogie.

Issue context Domain category: mechanical, documenta-
tion, electrical, and assembly.

Table 1 shows some examples of bogie ROX database entries
to illustrate the nature of these data (note that the majority of
the instances are mechanical issues).

To further understand the characteristics of these technical text
data, which justifies the TLP-based approach, Figure 3 shows
the power-law distribution of its ranked word frequencies com-
pared to what is expected in natural language (Zanette, D.
H., and Montemurro, M. A., 2005). Note that the technical
language curve has a positive offset with respect to natural lan-
guage. This increased word frequency spectrum may indicate
that this technical language shows a reduced vocabulary and
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Fretting corrosion

Leakage

Oil reservoir leakage

Seals wear

Grease quality degradation IHigh Temperature Ageing, Mechanical Ageing, ContaminationW

Micropitting / Macropitting

Scuffing

Fatigue crack propagation

Spalling

Fatigue ISubsurface / Surface initiated fatigueW

Fracture and Cracking IForced fracture / Fatigue
fracture / Thermal crackingW

Impact

Scaling

Shelling

Thermal shock

Wear IAbrasive / AdhesiveW
Metal build-up

Bogie frame

Subsurface initiated bending fatigue Material deformation IYielding, CreepW

Wheel

Axle bearing

Axle box

Inner and outer springs

Centering springs

Primary damper

Emergency springs

Air spring

Vertical damper

Lateral damper

Gearbox bearings
Gearbox gears

Gearbox

Surface defects

Loss of structural integrity

Subsurface defects

Rotates with difficulty or cannot rotate

Reduction of the primary suspension effect

Reduction of the centering effect

Reduction of the damping effect

Reduction of emergency suspension effect

Reduction of the secondary suspension effect

Reduction of the vertical damping effect

Reduction of the lateral damping effect

Bad or insufficient lubrication

Figure 2. FMMEA-based bogie failure ontology linking Component (black boldface) to Failure Mode (red italics) and then to
Failure Mechanism (blue).

therefore the same words may need to be used more often. In
a similar descriptive vein, Figure 4 shows the distribution of
technical ROX text lengths as word counts per record along
with some comparative hints regarding natural language. Note
that the statistical ROX length mode is around 8 words, which
is far from the optimum contemporary readability indication
of 17 words (DuBay, W. H., 2004). Such short texts have
some unique characteristics that make them difficult to han-
dle. For instance, they do not always observe the syntax of
written language, they contain limited context, and they give
rise to ambiguity as more than one meaning may be conveyed,
leading to vagueness and confusion (Wang, Z., and Wang,
H., 2016). Moreover, the ROX length distribution shows a
tail of longer texts that get increasingly difficult to read, and
also over 35 words the quality of a language model decreases
rapidly (Bahdanau, D., Cho, K., and Bengio, Y., 2015).

2.3. Causality-Contextualized Word Embedding

The original conception of a WE related a single word to its
local context given a shallow window of proximity (Mikolov,
T., Chen, K., Corrado, G., and Dean, J., 2013). However,
this principle does not hold for CI because the context of the

related texts is different. In this work, the goal is to learn the
causal relationships between Problems (i.e., Failure Modes)
and their Root Causes (i.e., Failure Mechanisms) through
their respective textual expressions. To do so, a binary-valued
Bag-Of-Words (BOW) model is considered to account for the
presence of multiple words concurrently (Le, Q., and Mikolov,
T., 2014). Note that the syntax is not retained as this model
focuses on the overall semantics through the lexicon. In turn,
the input and output vocabularies are also dependent on their
causal roles, and regarding that an effective method depends
on the size of the vocabulary (Chen, W., Grangier, D., and
Auli, M., 2015), both Root Cause and Problem lexicons are
considered in the present WE model.

The proposed implementation of the CCWE for troubleshoot-
ing is based on an encoder-decoder DL architecture using the
causal concept of refinements (Mitrovic, J., McWilliams, B.,
Walker, J., Buesing, L., and Blundell, C., 2021), see Figure 5.
Root Causes are probabilistically modeled given their Prob-
lems and some Context, which is a situational hint to enhance
language models (Yu, W., Zhu, C., Li, Z., Hu, Z., Wang, Q., Ji,
H., and Jiang, M., 2020), and may be stripped from the model
once trained. The CCWE is exploited with a contrastive esti-
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Table 1. ROX database examples of bogie system failures reported by maintenance services.

Issue context Problem Root Cause
mechanical vertical damper failure, seal-

ing defect
as per supplier investigation report the failure mode is the primer glue departed from
the metal parts. considers it was because the metal parts were not cleaned well while
in the pre treatment process the primer glue can’t adhere well to the metal parts so it
will cause debonding issue during operation.

mechanical anti roll bar assembly knock-
ing noise, excessive noise

a light stick slip phenomena is the root causes of the noise. it is decided to change the
knuckle as per updated design from supplier hyed for one complete train set. currently
in claim situation with supplier for them parts are compliant to specification.

mechanical oil leakage from gear box
unit, loss of tightness

as per supplier rca it is confirmed that the gear lubricating oil from the drainage hole
leakage caused by the labyrinth ring tw of roundness error. oil leakage causes in the
process of the part in ngc in sheet2 the process of operation not suitable for the mode
of transportation easy to cause roundness error of deformation when parts fall off or
pressure deformation.

assembly conical spring bonding issue,
loss of regulation

debonding beetwen rubber material and steel frame incorrect handling of adhesived
parts by operators before putting them into the mould. the cleanliness of localalized
area is jeopardized and it disturb the bonding process between rubber and interface. it
was not possible to detect during the validation tests the parts tested did not presented
failure. the issue happens when submitted to load sometimes with few milage or more
than 150.000 km for example.

Figure 3. Ranked word relative frequency distribution of
technical ROX text data versus natural language. The exponent
of the power laws is shown in brackets.

mation framework, which discriminates between the observed
data and some artificially generated noise (Gutmann, M., and
Hyvärinen, A., 2010; Mnih, A., and Teh, Y. W., 2012; Mikolov,
T., Sutskever, I., Chen, K., Corrado, G., and Dean, J., 2013).
This approach is attained through jointly learning a series of
nonlinear logistic regressions using an output logistic activa-
tion function and a cross-entropy cost criterion for training.
Bias terms are also considered because of the multiple-word
instances with different lengths (there is no basis to assume
that the embedding will be centered around the origin). Also,
being a DL solution the model is expected to be overparameter-
ized, so the use of Dropout layers is recommended to manage
words that belong to regions of poor overlap in the feature
space (Alaa, A. M., Weisz, M., and van der Schaar, M., 2017).
Specifically, the input layer is followed by a Dropout layer

Figure 4. Word count frequency distribution of technical ROX
text data records along with natural language readability indi-
cations.

to deal with long texts because these are more likely to have
words deactivated, therefore equaling their potential impact
to that of shorter instances. And the embedding layer, which
is smaller than the BOW-based layers, is also followed by
another Dropout layer to adjust its representational expressive-
ness and manage ambiguity more effectively (Yaghoobzadeh,
Y., Kann, K., Hazen, T. J., Agirre, E., and Schütze, H., 2019).

The proposed CCWE model gives the following probability
directly:

p(Root Cause|Problem, Context)

However, an explicit formulation through the embedding bot-
tleneck layer is advantageous to study the geometric properties
of its distributed representation, see Eq. (1).
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Figure 5. Encoder-decoder DL architecture of the CCWE in
inference mode. Dropout layers are used in training mode
only, and are thus not shown here for clarity.

CCWE = WENC · (Problem, Context) (forward)

⇠ W+
DEC · logit ([ Root Cause] ) (backward)

(1)

Note that the backward equation requires the inversion of
the non-square decoder matrix WDEC , which is not possible.
In this case, a least-squares approximation is used through
its pseudoinverse W+

DEC . Also note that the logit function
cannot be applied to a binary-valued BOW vector because it
leads to an asymptotic overflow. In this case, the values of
the [ Root Cause ] vector are clipped to 0.2 (false) and 0.8
(true). These bounds are driven by the extrema of the second
derivative of the logistic function and prevent its saturation.

Finally, the distributed representation of causality is to be ex-
ploited through the Principal Components (PC) of the CCWE
and the cosine distance between Root Cause and Problem
BOW vectors (Mikolov, T., Sutskever, I., Chen, K., Corrado,
G., and Dean, J., 2013). The angle they form in the PC space is
a common textual similarity metric utilized in semantic classi-
fication and search (Tan, S., Zhou, Z., Xu, Z., and Li, P., 2019).
And taking into account that the cosine similarity becomes
less predictive as the dimensionality increases (Yaghoobzadeh,
Y., Kann, K., Hazen, T. J., Agirre, E., and Schütze, H., 2019),
the PC representation is typically reduced to two dimensions
following the customary practice in NLP research.

3. RESULTS

Causal prediction is not a typical downstream NLP task apt
for evaluation. Therefore, the experiments conducted in this
section have been compared with human judgments on word
relations, i.e., an intrinsic evaluation (Bakarov, A., 2018). Ex-
planations have been provided through graphs, feature impor-
tance (e.g., word probabilities), visualizations (e.g., spectral
analysis), and concrete examples (Mothilal, R. K., Sharma, A.,

and Tan, C., 2020).

3.1. Causal Graphs

Graphs are a powerful representation formalism that can be
applied to a variety of aspects related to language process-
ing (Mihalcea, R., and Radev, D., 2011). With a proper choice
of nodes and edge drawing criteria and weighing, graphs can
be extremely useful for revealing regularities and patterns in
the data (Nastase, V., Mihalcea, R., and Radev, D., 2015).
Additionally, causal graphs reduce the adverse impact of latent
variables or noise (Bahadori, M. T., and Heckerman, D. E.,
2021). This section studies the failure ontology as a causal
graph to detect confounders (i.e., common root causes) as
forks, and colliders (i.e., common problems) as inverted forks.
To get an overview of these characteristics, centrality measures
have been used to pinpoint the most important nodes of the
resulting graphs.

On the one hand, the degree centrality CD(v) states that
the important nodes v are the ones that have many connec-
tions (Mihalcea, R., and Radev, D., 2011), see Eq. (2), where
V is the total number of nodes in the graph, and d is the
distance between two nodes, i.e., the minimum number of
vertices that separate them. The application of this criterion is
shown in Table 2 as a ranking of nodes, and Figure 6 shows
a graph that preserves the ontological relationships driven by
this ordered arrangement. According to the degree centrality
indicator, the confounders are the nodes related to the Failure
Modes of the suspension components (i.e., springs, damper...),
and the colliders are its Failure Mechanisms (i.e., fatigue crack,
material deformation, leakage, and the wear of seals).

CD(v) =
1

V

X

8v06=v

x, where x =

(
1 if d(v0, v) = 1

0 otherwise
(2)

On the other hand, the closeness centrality CC(v) states that
the important nodes v are the ones that are near other nodes
v0 (Mihalcea, R., and Radev, D., 2011). This proximity indica-
tor is calculated as the inverse of the sum of the path lengths
from a given node to all the other nodes, see Eq. (3). The
application of this criterion is shown in Table 3 as a ranking,
and Figure 7 shows the corresponding graph that preserves
the ontological relationships. According to the closeness cen-
trality indicator, the confounders are the nodes related to the
Failure Modes of the bearings: surface defects and rotation
difficulty. In general, note that the nodes with the greatest
centrality measures are not densely connected among them-
selves (some even show few connections), thus there are many
peripheral items to be taken into consideration.

CC(v) =
V � 1P

8v06=v d(v0, v)
(3)
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Bad or insufficient 

Rotates with difficulty

Seals wear
Reduction of the damping effect

Fatigue crack propagation

Leakage

Loss of structural integrity
Reduction of the primary suspension effect

Reduction of the lateral

Material deformation 

or cannot rotate

suspension effect
Emergency

lubrication

(Yielding, Creep)

damping effect

Reduction of the vertical
damping effect

Surface defects

Figure 6. Failure ontology subgraph driven by the nodes
with the greatest degree centrality.

Shelling

Seals wear
Surface defectsImpact

Spalling
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Scuffing
Wear (Abrasive wear / Adhesive wear)

Leakage

Material deformation 

or cannot rotate
t  Rotates with difficulty

Macropitting
p  Micropitting /

benndin
Subsurface initiated

bending fatigue

(Yielding, Creep)

Figure 7. Failure ontology subgraph driven by the nodes
with the greatest closeness centrality.

Table 2. Ranking of failure ontology nodes according to their
degree centrality score.

Failure Ontology Node Degree Centrality
Rotates with difficulty or cannot
rotate

0.2273

Surface defects 0.2045
Fatigue crack propagation 0.1591
Loss of structural integrity 0.1136
Leakage 0.0909
Material deformation (Yielding,
Creep)

0.0909

Seals wear 0.0682

Table 3. Ranking of failure ontology nodes according to their
closeness centrality score.

Failure Ontology Node Closeness Centrality
Fatigue crack propagation 0.2121
Leakage 0.1212
Material deformation (Yielding,
Creep)

0.1212

Seals wear 0.0909
Impact 0.0710
Surface defects 0.0682
Rotates with difficulty or cannot
rotate

0.0682

3.2. Causal Lexical Probabilities

This section conducts a preliminary study of the sensitivity of
the CCWE built with the bogie ROX data. The dimensionality
of the BOW for the Problem is |P | = 1591, for the Root Cause
it is |RC| = 2210, and for the embedding it is |e| = 300. This
configuration yields a model with more than 1M trainable
parameters. This WE has been trained using cross-validation
with a train/test data split of 80%/20%, and the resulting binary
accuracy is 0.9894. This learning result indicates that the
memorized word relationships of the CCWE are likely to
provide reliable causal associations for ROX. To illustrate the
troubleshooting capacity of the CCWE, Table 4 shows some

Table 4. Generic troubleshooting word examples obtained
with the CCWE.

Problem Possible Root Cause (Probability)
oil leak attached (0.8849), measured (0.6137),

hole (0.5733), pressure (0.2372)
bearing tightening (0.0659), vibration (0.0639),

shock (0.0495), assembly (0.0394)
gear box design (0.9062), tolerance (0.9061), oil

(0.8703), pressure (0.8237)

generic word examples.

In general, the Root Cause outcomes of the CCWE with high
probability are reasonable words that belong to the same se-
mantic field of the given Problems. Note that the probabilities
for the “bearing” component are an order of magnitude lower
than those for “oil leak” and ”gear box”. This result may be
due to the specificity of causal words like “tightening”, com-
pared to common words like “attached” or “design”. However,
there are also some noise words that typically appear in the
BOW of the Root Cause, such as “please”, “report”, “refer-
ence”, “part”, etc. This is attributed to the way the experts
provide standard ROX feedback. Also, the arrays of output
probabilities are mostly comprised of low values, and this is
mainly explained by the large space of BOW dimensionality,
which leads ROX instances to be sparse.

The geometrical characteristics of the obtained linguistic dis-
tributed representation are shown in Figure 8. Note that to
obtain this rendering, both the forward encoder and backward
decoder equations of the CCWE are needed. This distribution
shows that the Root Causes are concentrated in the center,
whereas the Problems are spread across the PC space. Thus,
the cosine similarity metric is needed to align them within
the ↵ angle, yielding a circular sector of causal likelihood. A
detailed example of the alignment between a generic Problem
like “noise” and its potential Root Causes is shown in Figure 9.
The results illustrate the incertitude of the derived causal rep-
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Figure 8. PC of the CCWE activations and the application
of the cosine distance similarity measure showing a circular
sector ↵ of causal likelihood.

Figure 9. Detailed example of a cosine distance lower than
five degrees (↵ < 5o) between the generic “noise” Problem,
its nearest Root Causes, and other close/similar Problems.

resentation as the nearest Failure Mechanisms are ”electri-
cal/rectification” and “wear”. In addition, many reasonably
related “noise” Problems (sharing the same Root Causes) are
also shown, e.g., “motoring”, “breakage”, “leakage”, “crack-
ing”, etc.

3.3. Troubleshooting Integration

This section determines if the relationships in the FMMEA-
based failure ontology correspond to high ROX-based causal
probabilities. To do so, the evaluation of whole Failure Mode
texts (as Problems P ) is conducted by taking the average prob-
ability p̄ROX(RC|P ) of the Root Cause RC words appearing
in the reported Failure Mechanisms, see Eq. (4), where N rep-
resents the words in the text being evaluated. Table 5 shows the
top-ranking failures that have been obtained. These results in-
dicate that the leading issues are related to springs and wheels,
which the latter is in accord to previous knowledge (Trilla,

A., Bob-Manuel, J., Lamoureux, B., and Vilasis-Cardona, X.,
2021). Also note that they are mostly linked to the main con-
founders, i.e., the common root causes, of the failure ontology.

p̄ROX(RCi|Pi) =
1

N

X

w2N

pROX(RCw
i |Pi)

i 2 FMMEA Failure Ontology

(4)

In addition to this direct FMMEA/ROX relationship, it is also
necessary to determine if the cross-failure probabilities are low
and thus assert that the proposed approach shows a discrimina-
tive property. This alignment study has been determined using
the Cross-Probability Difference (XPD) variable, defined by
Eq. (5) as the difference between the direct causal probability
and the anti-causal probabilities. Note that positive probabil-
ity differences represent a good alignment between Failure
Mode and Mechanism i, whereas negative differences mean
that other Failure Mechanisms j are more relevant (according
to ROX) than the one stated in the FMMEA-based failure
ontology.

XPD(i) = p̄ROX(RCi|Pi) � p̄ROX(RCj |Pi)

8j 6= i

i, j 2 FMMEA Failure Ontology
(5)

Regarding the distribution of the XPD variable, see Figure 10,
the majority of the FMMEA statements are aligned (71.32%
of strictly positive values). The clearest textual expressions are
driven by the centering springs component. Nevertheless, there
are many cases where the difference is too small to extract
strong conclusions, as is shown by the high peak around 0.
Maybe this is due to averages including missing terms, e.g.,
specific Failure Mechanism words like “spalling”, “scaling”,
“scuffing”, and “pitting” do not appear in ROX. In addition,
there are some outlier instances showing a large misalignment,
i.e., XPD < �0.06. Some examples are listed as follows:

• Bogie frame, Surface defects ! Material deformation
(Yielding, Creep)

• Bogie frame, Surface defects ! Shelling
• Wheel, Surface defects ! Material deformation (Yield-

ing, Creep)
• Vertical damper, Reduction of the vertical damping effect

! Metal build-up

All these results may be taken for different signs of poor
writing, and thus may also be an indication to rephrase those
statements and improve the meaning they convey.

To conclude the integration analysis, Table 6 shows an indirect
evaluation of the application of the ROX-based causality to the
FMMEA-based failure ontology through the cosine distance
as the PC vector angle similarity. Bearings and suspension
components populate this ranking, which is quite similar to
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Table 5. Ranking of ROX-based average probabilities driven by FMMEA failure ontology.

Component Failure Mode Failure Mechanism p̄ROX

Centering springs Reduction of the centering effect Material deformation (Yielding, Creep) 0.0308
Wheel Surface defects Shelling 0.0208
Emergency springs Reduction of emergency suspension effect Material deformation (Yielding, Creep) 0.0184
Inner and outer springs Reduction of the primary suspension effect Material deformation (Yielding, Creep) 0.0147
Bogie frame Loss of structural integrity Material deformation (Yielding, Creep) 0.0071
Bogie frame Loss of structural integrity Fatigue crack propagation 0.0021
Bogie frame Loss of structural integrity Impact 0.0019

Figure 10. Cross-Probability Difference (XPD) distribution
visualized through the histogram.

the one driven by the causal probabilities (a slight reordering
is observed, though). In fact, angles and probabilities score
a Pearson correlation coefficient of �0.65, so the previous
probability-driven conclusions are likely to be largely extrap-
olated in this causal distributed representation. Therefore,
the FMMEA entries that display wide ROX angles may in-
dicate that a rephrasing would be beneficial to increase the
comprehension of their text (Ansari, F., 2020). Anyhow, all
these results show that the FMMEA ontology relations can
be reasonably weighted either via ROX causal probability or
distance scores, and thus obtain a SCM to validate the CI
approach using a DL-based contextualized WE.

4. DISCUSSION

Up to this point, after having completed the workflow proce-
dure, the discrepancy between FMMEA and ROX has been
solely attributed to lexical imprecision between the same
causality principles expressed in a particular environment,
context, or perspective. However, there may be other sources
of epistemic uncertainty that could help explain this diver-
gence. This section addresses some particularities about the
proposed CCWE model.

For example, by the Independent Causal Mechanisms prin-
ciple, the causal generative process of a system’s variables
is composed of autonomous modules that do not inform or

influence each other (Schölkopf, B., Locatello, F., Bauer, S.,
Ke, N. R., Kalchbrenner, N., Goyal, A., and Bengio, Y., 2021).
In the troubleshooting probabilistic case tackled in this work,
this would imply that the conditional distribution of each Root
Cause variable (i.e., the Failure Mechanism) given its Problem
(i.e., its Failure Mode) did not inform or influence the other
causes. The presented CCWE does not respect this princi-
ple because of its multilayer neural topology trained using
the standard backpropagation procedure: the encoder layer
is influenced by all of the output cause variables, and this, in
turn, affects all the predictions through the forward propaga-
tion. However, this could also be seen as an advantage from a
multitask learning perspective (Crawshaw, M., 2020).

Additionally, performance gains of word embeddings are due
to certain system design choices such as dynamically sized
context windows and hyperparameter optimizations, rather
than the embedding algorithms themselves (Levy, O., Gold-
berg, Y., and Dagan, I., 2015). This argument leaves the door
open to considering chance as the ultimate explanatory factor
for the results obtained. At the same time, it motivates further
research study on DL-based WE.

4.1. Spectral Embedding

Probabilistic models like the CCWE can be viewed as directed
graphical models (Salakhutdinov, R., and Hinton, G., 2009).
As such, their learned knowledge may be interpreted using a
graph spectral embedding or clustering technique. A suitable
approach to extract this representation is through the factoriza-
tion of the Laplacian matrix L = D � A, which is a measure
of the local derivative of the graph (Mihalcea, R., and Radev,
D., 2011). D represents the degree matrix (i.e., the amount
of node incoming or outgoing links), and A represents the
adjacency matrix (i.e., the causal word relations). After ex-
tracting the eigencomponents of L, similar nodes must have
embeddings that are close to one another (Cai, H., Zheng, V.
H., and Chang, K. C.-C., 2018), and thus the Euclidean dis-
tance could be adequate for the similarity comparisons. This
section explores this proximity property in the present causal
degradation environment.

Figure 11 shows a representation of the two largest Lapla-
cian eigenvectors, which that aim to capture the maximum
information (in the form of variance dispersion) of the em-
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Table 6. Ranking of ROX-based cosine distance (angle similarity) driven by FMMEA failure ontology.

Component Failure Mode Failure Mechanism ↵

Gearbox bearings Rotates with difficulty or cannot rotate Wear (Abrasive wear / Adhesive wear) 0.5995
Vertical damper Reduction of the vertical damping effect Seals wear 5.9321
Axle bearing Rotates with difficulty or cannot rotate Wear (Abrasive wear / Adhesive wear) 14.6010
Primary damper Reduction of the damping effect Seals wear 15.1803
Centering springs Reduction of the centering effect Material deformation (Yielding, Creep) 17.9046
Inner and outer springs Reduction of the primary suspension effect Material deformation (Yielding, Creep) 20.4794
Wheel Surface defects Metal build-up 23.2299

Figure 11. Largest Laplacian eigenvectors � of the CCWE
directed graph and the application of the Euclidean distance
similarity measure showing a circle of causal likelihood R.

bedded causal data. Given the directed bipartite structure of
the troubleshooting scenario tackled in this work, where the
same word can be used to describe both the Root Cause and
the Problem, two degree matrices have been used: one with
the Problem word nodes (output degrees only), and the other
with the Root Cause word nodes (input degrees only). Finally,
their representations have been overlapped, showing that the
cause/effect separation is preserved in this low-dimensional
illustration. However, only the central region where the two
causal roles meet seems to be amenable to any further infer-
ence assessment.

Figure 12 shows a more detailed example over the generic
“pressure” Problem. All the Failure Mechanism terms that
appear seem reasonable given this Failure Mode, e.g., “loop”,
“zero”, “leak”, etc. However, in this case, the associated proba-
bilities seem to be unrelated to the distance scores. Moreover,
trying to replicate the “noise” Problem used before results
in incomprehensible results due to the vast amount of terms
that rapidly appear as the radius R is increased. Maybe the
factorization of the Laplacian matrix, which is strictly defined
for an undirected graph, built over a directed graph is flawed
and needs further attention.

Figure 12. Detailed example of spectral embedding over the
generic “pressure” Problem. In this troubleshooting scenario,
arrows point toward the potential Root Causes, and the related
probabilities are also shown under the words.

4.2. Language Modeling

In previous sections it has been shown that the lexicon per se is
sufficient to produce reasonable causal probabilities. However,
the principle of semantic composition states that the meaning
of a phrase can be derived from the meaning of the words
that it contains as well as the syntax that binds them (Iyyer,
M., Boyd-Graber, J., Claudino, L., Socher, R., and Daumé III,
H., 2014). Likewise, a WE captures syntactic and semantic
regularities (Mikolov, T., Yih, W.-t., and Zweig, G., 2013).
Consequently, a WE could be able to compose meaningful
phrases and thus build a language model.

Language models learn linguistic knowledge, store relational
knowledge present in the training data, and may be able to an-
swer structured queries (Petroni, F., Rocktäschel, T., Lewis, P.,
Bakhtin, A., Wu, Y., Miller, A. H., and Riedel, S., 2019). To
do so, neural encoder-decoder models pioneered by machine
translation were proposed to achieve the goal of mapping input
text to output text (Cho, K., van Merriënboer, B., Gulcehre,
C., Bahdanau, D., Bougares, F., Schwenk, H., and Bengio,
Y., 2014). An encoder network first reads and represents a
source sentence into a fixed-length vector, and a decoder net-
work then outputs a target sentence from this encoded vector.
This encoder/decoder architecture can also be extended to deal
with corpora and vocabulary sizes, and complex, long term
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structures of language (Jozefowicz, R., Vinyals, O., Schus-
ter, M., Shazeer, N., and Wu, Y., 2016). Eventually, encoder
and decoder are jointly trained to maximize the conditional
probability of a correct relationship, which is conceptually
equivalent to what is pursued in the WE but this time consid-
ering the sequentiality of words as an additional embedded
context (Liu, Q., Kusner, M. J., and Blunsom, P., 2020). This
heteroassociative property is explored in this section to relate
Root Causes to Problems for long texts.

The specific implementation adopted in this work is based
on the Sequence-to-Sequence (S2S) approach. S2S applies
recurrent neural networks to problems whose input and output
sequences have different lengths with complicated and non-
monotonic relationships (Sutskever, I., Vinyals, O., and Le, Q.
V., 2014). Specifically, standard Long Short-Term Memory
(LSTM) networks are used due to their superior performance
for small corpora, as is the case in TLP, instead of more popular
models based on Transformers (Ezen-Can, A., 2020). Also,
model awareness of the context (e.g., through the WE) helps
understand the semantic meaning of an input sequence and
generate a more informative response (Yu, W., Zhu, C., Li, Z.,
Hu, Z., Wang, Q., Ji, H., and Jiang, M., 2020). Considering
all these points, Figure 13 shows the diagram of the proposed
causality-contextualized S2S language model using the LSTM
and the CCWE. Note that given the sequential nature of S2S,
the input/output interface to the system is no longer a BOW but
a one-hot encoded single-word vector, i.e., words are presented
and retrieved from the language model on a one-by-one basis.

Table 7 shows the plain Root Cause outputs obtained from the
system given potential generic Problems. In light of these re-
sults, the causality-contextualized language model exhibits the
performance of a “pidgin”, and this is mainly attributed to the
strict lexicon-driven text preprocessing stage. The model does
not retrieve the ROX entries literally. Instead, it displays a gen-
eralization capacity using vague words (e.g., most Problems
are blamed on “reporting” as their Root Cause). Such patho-
logical utterances, also known as hallucinations, are common
with S2S (Lee, K., Firat, O., Agarwal, A., Fannjiang, C., and
Sussillo, D., 2018). And due to the discrepancy between this
vaguely generated text and the detailed ROX reports, the ex-
posure bias problem that usually affects such autoregressive
language models is increasingly more penalizing for technical
language (Wang, C., and Sennrich, R., 2020). Also, input
Problems need to be provided using long, elaborate and ver-
bose descriptions, otherwise the model outputs nothing (i.e.,
long chains of padding symbols). This may be attributed to
the most critical components of the LSTM cell, i.e., the forget
gate and the activation function (Greff, K., Srivastava, R. K.,
Koutnı́k, J., Steunebrink, B. R., and Schmidhuber, J., 2017).

Finally, there are diminishing returns with increasing the scale
of model parameters, dataset size, and training computation,
because these variables are power laws (Kaplan, J., McCan-

Encoder
LSTM

Root Cause
Word

Problem
Word

𝑊𝐸𝑁𝐶
𝑊𝐷𝐸𝐶+

CCWE

Decoder
LSTM

CCWE

Figure 13. Diagram of the causality-contextualized S2S lan-
guage model using the LSTM and the CCWE.

Table 7. Plain troubleshooting Root Cause sentences generated
by the causality-contextualized language model given potential
generic Problems.

Problem Root Cause
oil leak found on bogie, gear box, and
wheel at high speed

report design

hot axle box bearing assembly
traction motor caught fire, smoke alert on
commercial service

report inspection

noisy blower does not turn: power elec-
tronics are not available

report failure part

dlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R.,
Gray, S., Radford, A., Wu, J., and Amodei, D., 2020), so the
potential for significant improvement needs to be driven by a
complementary source of knowledge, such as the FMMEA,
as it has been researched in this work. The causal structure of
use here shows 19 Failure Mechanisms for 12 Failure Modes
regarding 14 components, so further refinements (or general-
izations) may be observed if these values are augmented.

5. CONCLUSION

This work describes a first exploratory work on how the Causal
Inference paradigm may be applied to troubleshooting rolling
stock bogies through the extraction of linguistic knowledge
from FMMEA and ROX text data using graphs and contex-
tualized word embeddings. The overall conclusions indicate
that the inference of causality has already been attained with
the available theoretical and practical documentation, showing
a consensus greater than 70%. Interestingly, though, some
disagreement between Root Cause and Problem has arisen in
a few areas, leading to poor diagnosis results, and potentially
indicating that textual expression improvements are necessary
in the technical materials.

The central piece of this research is the construction of a
neural word embedding that differs from the state of the art,
which is focused on modeling the local context of a single
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word. The proposed model jointly embeds two whole textual
instances that belong to different (causal) contexts. In terms
of evaluation, given that CI is not a well-defined task in lan-
guage processing, the results may be questioned due to their
strict dependence on subjective human criteria. This is a clear
point of general improvement (beyond the specific purposes
of this work) toward the fair assessment of other related CI
approaches such as the Twin Networks method to estimate
the probabilities of causation (Vlontzos, A., Kainz, B., and
Gilligan-Lee, C. M., 2021), the causal regularization of neural
networks to improve their interpretability (Bahadori, M. T.,
Chalupka, K., Choi, E., Chen, R., Stewart, W. F., and Sun,
J., 2017; Shen, Z., Cui, P., Kuang, K., Li, B., and Chen, P.,
2018), or the learning of causally disentangled representations
using Variational Autoencoders (Suter, R., Miladinović, D.,
Schölkopf, B., and Bauer, S.,, 2019; Yang, M., Liu, F., Chen,
Z., Shen, X., Hao, J., and Wang, J., 2020).

In terms of application, a direct implementation of this de-
veloping approach could be driven by a retrieval-augmented
generation system for work orders to advise the maintenance
team by identifying the most probable underlying root cause
to a given problem, and reduce both the time to action and
asset downtime while increasing the safety of the railway ser-
vice (Ansaldi, S. M., Agnello, P., Pirone, A., and Vallerotonda,
M. R., 2021). This enhanced troubleshooting system would
equip a model that combines pre-trained parametric mem-
ory (i.e., the causality-contextualized word embedding) and
non-parametric memory (i.e., a classic data retrieval-based
engine) for language generation (Lewis, P., Perez, E., Piktus,
A., Petroni, F., Karpukhin, V., Goyal, N., Küttler, H., Lewis,
M., Yih, W.-t-, Rocktäschel, T., Riedel, S., and Kiela, D.,
2020). However, the shortage of maintenance text data may
hinder the exploitation of this approach. Therefore, a NLP
augmentation strategy could be helpful (Bayer, M., Kaufhold,
M.-A., Buchhold, B., Keller, M., Dallmeyer, J., and Reuter, C.,
2021), although the larger the data analyzed, the greater the
chance that spurious correlations dominate the results and lead
to erroneous conclusions (Dima, A., Lukens, S., Hodkiewicz,
M., Sexton, T., and Brundage, M. P., 2021). Alternatively,
fine-tuning a bigger pre-trained language model, which has
become the de facto standard for doing transfer learning in
NLP, could also be advantageous (Li, J., Tang, T., Zhao, W.
X., and Wen, J.-R., 2021). Finally, the deployment of the pre-
sented approach to a different railway PHM asset such as the
Passenger Door System may reveal further CI insights into the
integration of FMMEA with ROX (Dinmohammadi, F., Alkali,
B., Shafiee, M., Bérenguer, C., and Labib, A., 2016), and with
the increased availability of diverse SCM, a Graph Neural
Network could expect to learn a truly holistic troubleshooting
system at the train level (Bronstein, M. M., Bruna, J., Cohen,
T., Velickovic, P., 2021).
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ABSTRACT

This work develops a versatile approach to discover anomalies
in operational data for nominal (i.e., non-parametric) subsys-
tem event signals using unsupervised Deep Learning tech-
niques. Firstly, it builds a neural convolutional framework
to extract both intrasubsystem and intersubsystem patterns.
This is done by applying banks of voxel filters on the charted
data. Secondly, it generalizes the learned embedded regu-
larity of a Variational Autoencoder manifold by merging la-
tent space-overlapping deviations with non-overlapping syn-
thetic irregularities. Contingencies like novel data, model
drift, etc., are therefore seamlessly managed by the proposed
data-augmented approach. Finally, it creates a smooth diag-
nosis probabilistic function on the ensuing low-dimensional
distributed representation. The resulting enhanced solution
warrants analytically strong tools for a critical industrial en-
vironment. It also facilitates its hierarchical integrability, and
provides visually interpretable insights of the degraded condi-
tion hazard to increase the confidence in its predictions. This
strategy has been validated with eight pairwise-interrelated
subsystems from high-speed trains. Its outcome also leads to
further reliable explainability from a causal perspective.

1. INTRODUCTION

Anomalies are signs of a strange system condition that inher-
ently represent a flaw, a degraded state, a fault, or a failure,
and discovering them is of utmost importance to ensure the
correct operation of a physical machine. The detection of
anomalies using subsystem-event data is regarded as a tradi-
tional problem in the Prognostics and Health Management

Alexandre Trilla et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

(PHM) community because it has a broad applicability but
it still needs a definitive approach. This problem is assumed
to be tractable using reams of data through a statistics-based
perspective. However, there’s no canonical approach to effec-
tively process nominal events like these records. Specifically,
there’s a lack of consensus and methodology on algorithm
selection in different scenarios (Huang, B., Di, Y., Jin, C., and
Lee, J., 2017).

Subsystem event data are generally available through time-
stamped nominal variables where typically no single message
is decisive to raise an alarm. Thus, the density of information
is low, along with the sparsity of this representation. These
characteristics pose challenging encoding questions to the
PHM engineers who are responsible for designing rules and
procedures to diagnose anomalies in this environment. Such
nominal event data have been commonly tackled as discrete-
valued variables using counts of their occurrences in a sliding-
time window, followed by a supervised learning scheme such
as a Support Vector Machine or a Random Forest (Sammouri,
W., Côme, E., Oukhellou, L., Aknin, P., and Fonlladosa, C.-E.,
2014). After the Deep Learning revolution (Sejnowski, T. J.,
2018), though, the recent state of the art in Anomaly Detection
for PHM is dominated by the successive transformation of
representations using Autoencoders, which are unsupervised
neural networks that exploit the autoassociations in the data
through a dense and efficient low-dimensional information-
compressed embedded space (Fink, O., Wang, Q., Svensén,
M., Dersin, P., Lee, W.-J., and Ducoffe, M., 2020).

Different solutions have been developed to address specific
problems. For example, to counter the adverse effect of faulty
data shortage and be robust to different operating conditions,
an Extreme Learning Machine-based Autoencoder has been
used to blend data from different sources conserving their
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homothety, and then its embedding has been used to classify
the anomaly (Michau, G., and Fink, O., 2019). Similarly,
for such open-set problems where the knowledge of all fault
types may be incomplete at training time, the manifold of
an adjusted Variational Autoencoders has been used (Arias
Chao, M., Adey, B. T., and Fink, O., 2019). Also in this
topology-preserving similarity line, further tweaks on the ob-
jective criteria to obtain a regular latent space have led to the
consideration of Self-Organizing Maps within a Deep Autoen-
coder (Forest, F., Lebbah, M., Azzag, H., and Lacaille, J.,
2019). Following this need for smooth behaviors, a recurrent
Autoencoder has also been used to get continuous probabilities
on machine health condition instead of the sudden evolution
that is directly experienced when machines degrade (Shahid,
N., and Ghosh, A., 2019). In light of all these approaches,
it is clear that Autoencoders have generally been used with
success as feature extractors and anomaly detectors for diverse
applications (Farzad, A., and Gulliver, A., 2020; Dangut, M.
D., Skaf, Z., and Jennions, I., 2020). Particularly, one of the
most promising environments for this technique is found when
the input data gets represented as an image and a convolu-
tional Autoencoder architecture is deployed (Eid, A., Clerc,
G., Mansouri, B., and Roux, S., 2021; Rodriguez Garcia, G.,
Michau, G., Ducoffe, M., Sen Gupta, J., and Fink, O., 2021).

This work unifies the former successful ideas under the same
framework, and builds a novel value-added solution for main-
tainers to detect rolling-stock anomalies in a high-speed rail-
way environment using only operational data. To this end,
a generative approach is considered as its main component,
being the most expressive probabilistic technique to model
the complexity of the problem at hand. Moreover, this model
naturally enables the production of synthetic data to face the
shortage of anomalies that is typically found in a real-world
commercial transport service. And finally, observing the in-
dustrial requirement of an interpretable safety-critical PHM
system and its connection to visualization (Elattar, H. M.,
Elminir, H. K., and Riad, A. M., 2016), hazard maps are ex-
tracted to build trust with the customers and increase their
confidence in this innovative approach.

The article is organized as follows: Section 2 describes the
logged multi-subsystem operational event dataset and the
framework to process it based on a Hierarchical Variational
Autoencoder. Section 3 shows the diagnosis results obtained
in terms of Anomaly Detection (i.e., a classification objective).
Section 4 discusses the general interpretability insights that
may be extracted, which are mostly based on causality, and
Section 5 concludes the work with some future avenues of
improvement.

2. MATERIALS AND METHOD

This section describes the data that have been used to learn
and exploit the anomaly model, the strategy to obtain this

knowledge, and the measurable key performance indicators
to quantify the expected detection success in the field. Addi-
tionally, the ISO 13374 standard has been observed to design
the proposed solution (ISO, 2003). What follows is a brief
description of the main modules that have been implemented:

Data Acquisition The operational events have been logged
using the Train Control Management System (TCMS),
which is the on-board computer that sniffs the backbone
network of the train.

Data Manipulation The subsystem event-data have been
binarized into a logic-like waveform and arranged onto a
charted geometric space.

State Detection The data-space has been transformed with
filters and modeled using a probabilistic generative ap-
proach with latent variables. Additionally, synthetic data
have been produced to enrich the model and generalize
the diagnosis solution, which has been devised as a di-
chotomous classifier.

Advisory Generation Hazard maps have been produced to
provide visual feedback of the degradation zones that are
likely to generate anomalies.

2.1. Subsystem Event Dataset

While the trains are in commercial service, their on-board
subsystems generate messages about their operation according
to some predefined rules driven by specific events designed
by their suppliers and manufacturers. These messages are
then logged by the TCMS, which is continuously monitoring
them. In this work, a dump of subsystem logs (syslogs) for a
whole year has been collected from a high-speed rolling stock
platform. What follows are some descriptive statistics of these
records to better understand the nature of these longitudinal
data.

The dataset amounts to 4.8M events distributed across the
multiple train units in the fleet throughout the year, see Fig-
ure 1. There are two main modes in this distribution: trains
that generated around 70k events, and trains that generated
around 110k events. This may be due to different mission
profiles to balance the load of the service.

These subsystem event data are essentially nominal, i.e., non-
parametric. They are defined by a specific subsystem/train
identification code and the timestamp of occurrence. Addition-
ally, there are some context variables like the GPS location
that may be useful to display operational details, and eventu-
ally to help fathom the potential reasons that may explain a
given event pattern. For example, Figure 2 displays the evolu-
tion of monthly event counts showing seasonal patterns: this
function is flat around 9k average unit events for half of the
year, and plunges in the spring and the fall. Figure 3 displays
the evolution of weekly events, showing that the service peak
is on Thursday (busy business day) while the trough is on
Sunday (late weekend). Finally, Figure 4 displays the event
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Figure 1. Histogram of the total event count per train unit,
showing two main modes as humps in the kernel density esti-
mation.

Figure 2. Monthly evolution of event counts.

evolution regarding the train location on the line, showing that
the capital is the area where the majority of the events are
generated, and the counts decrease exponentially on the more
distant destinations.

Regarding the specific subsystems that issue messages into
the network, Figure 5 displays their total arrangement. Ad-
ditionally, for each of them, a power law defines its internal
distribution of events, see Figure 6 for the Traction subsystem
shown as an example. Note that there exists some functional
spillover among the subsystems, for instance, between the
Traction and the Brake. The rolling stock platform of use here
equips a blended braking system by which the traction motor
is both used to put the train into motion and also to stop it.
This explains why braking events can be found in the Traction
subsystem stream, e.g., “Traction/Brake Train Line Fault”,
“Regenerative Brake Defect”, etc. This mixed nature of event
occurrence justifies the importance of building a framework
able to blend data from different sources. The next section

Figure 3. Weekly evolution of event counts.

Figure 4. Evolution of event counts given the location.

describes how this point has been particularly considered in
this research.

2.2. Anomaly Detection Framework

This section describes the solution that has been designed to
detect anomalies in operational data using nominal subsystem
events. Figure 7 shows its modular framework, where its
functional blocks are shown in boldface, and the details of
their implementation are further described in the following
subsections.

2.2.1. Event-Voxel Data Fusion

In a PHM environment, the data that can reliably contain
information about the failure of a machine is typically scarce.
Therefore, all the data sources that may be within reach are
advised to be collected and exploited, especially if a statistics-
based approach is targeted (Gelman, A., 2021). However, the
workload for data selection and filtering is significant with
heterogeneous and complex datasets, especially in inference-
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Figure 5. Ranked total event counts given the subsystems.

based classification problems like Anomaly Detection (Huang,
B., Di, Y., Jin, C., and Lee, J., 2017). In light of this scenario,
there is a need to develop an automatic approach to represent
and fuse different data from distinct origins (Hu, X., Eklund,
N., and Goebel, K., 2007), i.e., concurrent intrasubsystem as
well as intersubsystem sources. The proposed process to attain
this goal is described as follows.

Initially, the data from the timestamped subsystem events
are massively processed using regular expressions to extract
the key-value pairs and conflate similar logs into matching
clusters (Du, M., Li, F., Zheng, G., and Srikumar, V., 2017).
Additionally, they are segmented into train units and 24-hour
time sets that align with the commercial transport schedule,
yielding around 20k instances within the dataset. Also, the
coordination with the maintenance activities runs at the day-by-
day level, thus the decisions are made by the Operations Team
within this time frame. Finally, the resulting sets undergo the
subsequent series of dimensional (D) transformations:

1D: Nominal Event to Parametric Time Series The nature
of the nominal event data is first transformed into a time
series of binary parametric variables using a spreading
filter (Hu, X., Eklund, N., and Goebel, K., 2007). The
resulting time-dilated data resemble the pulse signals of
a logic circuit that can be further analyzed because they
represent useful information for health management such
as the time between events (Xie, Y. J., Tsui, K. L., Xie,
M., and Goh, T. N., 2010). The resolution in time adopted
in this work is of 30 minutes, i.e., 48 time slices per day.

2D: Intrasubsystem Diversity To illustrate the information
that a single subsystem generates by itself, e.g., see Fig-
ure 6, a bidimensional image-like representation is pro-
posed. Such charted data organization can display com-
plex patterns such as correlations, recursive behaviors,
or spectral components (Rodriguez Garcia, G., Michau,

Figure 6. Histogram of the top 30 frequency-ranked events for
the Traction subsystem.

G., Ducoffe, M., Sen Gupta, J., and Fink, O., 2021; Eid,
A., Clerc, G., Mansouri, B., and Roux, S., 2021). In
this work, the 30 most frequent events per subsystem are
considered. To see how this representation is effective to
display different degradation conditions, Figure 8 shows
a Normal instance chart of Traction subsystem behavior.
In this representation, only the most frequent events at
the top of the rank get generated sparsely. In contrast,
Figure 9 shows an Anomaly instance chart. In this case,
many events get generated concurrently, also in the infre-
quent event space. These two plots show the two extremes
of the degradation spectrum. For predictive maintenance
purposes, the interesting analysis lies in the transition
phase, especially around the incipient point of failure.

3D: Intersubsystem Diversity The last step in the represen-
tation of the multiple subsystem data adds a new dimen-
sion where different charts may be stacked. This approach
clearly shows the concurrent nature of event observation
among the different generators. In this work, pairwise-
interrelated subsystems such as the Traction and Brake
example are considered.

In the proposed volumetric representation, the smallest quan-
tum of data is therefore given by a voxel of time, intrasubsys-
tem and intersubsystem binary event occurrence. These voxels
are then arranged into a tensor of size (30,48,2) that is suitable
for exploitation with a Deep Learning model, as is described
in the next section, to extract the relevant dynamic (i.e., time
evolving) data characteristics between the thirty most frequent
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Figure 7. Diagram of the proposed Anomaly Detection framework. Plot (a) depicts the expected distribution of the Reconstruction
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solution. Regarding its industrial deployment, the data path for its straightforward diagnosis evaluation is displayed as a thick
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Figure 8. Chart representation of a Normal condition pattern.

events for two related subsystems (e.g., the Traction and the
Brake).

2.2.2. Denoising Variational Autoencoder

A Variational Autoencoder (VAE) is a probabilistic approach
that is used to represent the process of data generation. The
VAE provides a principled framework for learning deep latent-
variable encoding models Q(z), and the corresponding decod-
ing inference models (Kingma, D. P., and Welling, M., 2019).
This method is a key enabler to implement the proposed in-

Figure 9. Chart representation of an Anomaly condition pat-
tern.

tegrated approach working on unsupervised categorical data
X like regular operational events (Hancock, J. T., and Khosh-
goftaar, T. M., 2020). At its core, the VAE is a variational
Bayesian method (Doersch, C., 2016), and given that the
Bayesian theory rests on an axiomatic foundation, the VAE is
guaranteed to have quantitative coherence that other methods
do not have (Duda, R. O., Hart, P. E., and Stork, D. G., 2001).
Moreover, adding random noise and regarding a denoising
learning schedule is helpful to secure a good generalization
performance of the model and enable its reuse for pretraining
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on downstream tasks (Erhan, D., Manzagol, P.-A., Bengio, Y.,
Bengio, S., and Vincent, P., 2009).

The VAE fundamentally maximizes the probability of the data
under the entire generative process, i.e., through the compres-
sion in the embedded latent space. Its objective function is
the Evidence Lower Bound (ELBO), see Eq. (1), where KL
is the Kullback-Leibler divergence. The three main factors
that define the implementation of the ELBO for the proposed
Denoising VAE are listed as follows:

• Encoding/Decoding Functions Q: Convolutional Neural
Networks

• Latent Space Manifold z: Multivariate Normal Distribu-
tion

• Reconstruction Error/Loss: Binary Cross-Entropy

ELBO(X, Q) =Ez⇠Q[log P (X|z)] � KL[Q(z)kP (z|X)]

=Ez⇠Q[log P (X|z)]�
Ez⇠Q[log Q(z) � log P (z|X)]

(1)

Regarding the encoding, the representation of the nominal
event data X into 3D binary voxels arranged into tensors natu-
rally leads to their effective exploitation through a deep convo-
lutional neural framework. Expressive complex functions in
Q are to be learned with the embedded non-linearities, which
are introduced by the Rectified Linear Unit (ReLU) activation
function, and the weight-sharing strategy of its filters help the
resulting network to not overfit the data. Moreover, events are
well-aligned at similar scales, which results in less variation
in the critical data (Kanazawa, A., Sharma, A., and Jacobs, D.,
2014). Finally, introducing random noise at this stage (e.g.,
through a few voxel value flips) plays an important role in
achieving good generalization performance: it makes nearby
data points in the low dimensional manifold robust against
the presence of small deviations in the high dimensional ob-
servation space (Vincent, P., Larochelle, H., Bengio, Y., and
Manzagol, P. A., 2008). This variation could be physically
interpreted as the thermal noise in the sensors that eventually
generate the events in the subsystems.

Regarding the learned embedding, each dimension of the latent
random variable z is assumed to be independent of each other
(i.e., they are factorized) and modeled by a univariate Gaussian
distribution whose parameters (i.e., the mean and the variance)
are obtained by the non-linear neural encoding function Q. As
a result, the latent space displays enough smooth regularity to
be considered as a manifold. Specifically, a manifold is a topo-
logical space that is locally Euclidean (Bredon, G. E., 1995).
This low-dimensional geometric analysis makes it computa-
tionally advantageous compared to the high dimensional input.
Additionally, this latent distributed representation, which is

set to 2 dimensions for representational purposes, is amenable
to the visual interpretation of the hazardous anomaly zones.
This is extremely useful because the similarity in high di-
mensional spaces is meaningless (Fefferman, C., Mitter, S.,
and Narayanan, H., 2016). Moreover, limiting the expressive-
ness of this bottleneck layer helps to compress the data and
thus retain its most meaningful attributes, which is likely to
be helpful for the generalization of the solution and prevent
overfitting. Finally, given that stochasticity is inherent in the
sampling process on the manifold (here this can be taken for a
sort of injected latent noise), further improved performance is
expected (Im, D. J., Ahn, S., Memisevic, R., and Bengio, Y.,
2017). The source of this variation could be physically found
in the seed of the random number generator, e.g., a timer.

Regarding the objective loss function, most PHM approaches
dealing with parametric data assume Gaussian or Laplacian er-
ror likelihood distributions and thus consider Mean Squared or
Mean Absolute Error (MAE) metrics to train and evaluate their
performance (Rodriguez Garcia, G., Michau, G., Ducoffe, M.,
Sen Gupta, J., and Fink, O., 2021). MAE is especially robust
to outliers in time series data (Lai, G., Chang, W.-C., Yang,
Y., and Liu, H., 2018), thus helping in the modeling of the
regular operational condition. Nevertheless, for the current
event-based scenario, interpreting binary data as probabilistic
targets and introducing classification metrics such as the Bi-
nary Cross Entropy leads to faster training as well as improved
generalization (Simard, P. Y., Steinkraus, D., and Platt, J. C.,
2003). This implicitly assumes that the reconstruction error
in the ELBO is Bernoulli distributed (Sicks, R., Korn, R., and
Schwaar, S., 2020).

Finally, to complete the description of the VAE proposed in
this work, Table 1 shows some further details about the internal
structure and parameters for the Encoder part (note that the
Decoder simply mirrors and unwinds this given configuration).
In total, the VAE comprises over 120k trainable parameters.

2.2.3. Synthetic Data Augmentation

To enhance the out-of-distribution generalizability and the
robustness of the proposed solution, the available data is aug-
mented. This gives rise to a set of synthetic instances that
are expected to go beyond the limited set of observed anoma-
lies. This strategy is increasingly gaining adoption in the
industry (Strickland, E., 2022), where the assets are typically
overmaintained to minimize the risk of a service-affecting
failure.

In the previous section, the management of noise was de-
scribed (along with the introduction of a denoising strategy) for
performance improvement purposes (Vincent, P., Larochelle,
H., Lajoie, I., Bengio, Y., and Manzagol, P.-A., 2010). Addi-
tionally, the data is here transformed by considering shifts in
time, also known as translations. Convolutional Neural Net-
works are not naturally invariant to translations, but they can
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Table 1. VAE Encoder structure parameter chart.

Layer Name Type Filter Stride Amount Activation Output Shape Parameters
Event Voxel Input Linear (30, 48, 2) 0
Shallow Receptive Conv2D (3,3) 2 32 ReLU (15, 24, 32) 608
Deep Receptive Conv2D (3,3) 3 64 ReLU (5, 8, 64) 18496
Sparse Vector Flatten (2560) 0
Dense Vector Dense ReLU (16) 40976
Latent Mean Dense Linear (2) 34
Latent Variance Dense Linear (2) 34

acquire this feature if such transformation is embedded in the
data strategy (Biscione, V., and Bowers, J. S., 2021), especially
when no Pooling layers are introduced in the pipeline (Chaman,
A., and Dokmanic, I., 2021), as is the case here. Eventually,
the data are separated into Normal and Anomaly groups ac-
cording to their amount of reconstruction error, which is a
reliable indicator to detect anomalies when its value is over the
99th percentile (Rodriguez Garcia, G., Michau, G., Ducoffe,
M., Sen Gupta, J., and Fink, O., 2021). What follows is the
description of the synthetic generation process based on inter-
polation and extrapolation driven by this anomalous condition
distinction, all of which take place in the latent space manifold
that has been designed to exhibit enough regularity to perform
these operations.

The few instances that are regarded as anomalous, i.e., the
ones that display a large reconstruction error, comprise the
minority class as they lie on the long tail of the loss distribu-
tion. This data imbalance can cause learning problems and
result in skewed outcomes. To counter this adverse situation, a
combination of oversampling for the minority (i.e., Anomaly)
class and undersampling for the majority (i.e., Normal) class
achieves better classifier performance (Chawla, N. V., and
Bowyer, K. W., 2002). Specifically, the method for oversam-
pling the minority class involves linearly interpolating among
the nearest neighbors, which thus creates similar synthetic
examples.

Finally, generative models like the VAE give rise to “fantasy”
data whose probability distribution is the same as that of the ob-
served data (Bishop, C. M., 2006). This principle is exploited
here outside the main cluster of Normal data as a grid of non-
overlapping instances deployed on the latent space (Huh, D.,
2011). In PHM, particularly, this extrapolation-based approach
was originally inspired by the natural immune system (Qiu,
H., Eklund, N., Hu, X., Yan, W., and Iyer, N., 2008), and thus
there is sensible evidence to believe in its effectiveness.

2.2.4. Hierarchical Probabilistic Detection

Beyond the plain discriminative function introduced by the
amount of reconstruction error, providing a fine-grained as-
sessment of the stage of degradation is advantageous to avoid a
sudden evolution from Normal to Anomaly conditions (Shahid,
N., and Ghosh, A., 2019). To this end, a Multilayer Percep-

tron (MLP) neural network is hierarchically introduced on the
manifold z to directly estimate the probability of Anomaly
pA, see Eq. (2) for a matrix notation of this classification func-
tion, where W are the input (I) and hidden (H) transformation
matrices, and g is a non-linearity bounded between 0 and 1
such as the logistic sigmoid function. The computed prob-
ability enables considering decision theory criteria such as
the management of risk driven by the reject option, and also
facilitates its combination within more integrated probabilistic
solutions (Bishop, C. M., 2006).

pA(z) = g(WH(g(WIz))) (2)

Well-regularized MLP’s significantly outperform recent state-
of-the-art specialized architectures (Kadra, A., Lindauer, M.,
Hutter, F., and Grabocka, J., 2021). Functionally, the MLP
performs a non-linear logistic regression that learns the tessel-
lation of the latent space and decouples the two degradation
conditions. This objective is attained by the contrastive char-
acter of the cross-entropy loss (Khosla, P., Teterwak, P., Wang,
C., Sarna, A., Tian, Y., Isola, P., Maschinot, A., Liu, C., and
Krishnan, D., 2020), which is fueled by the thresholded recon-
struction error that is incorporated explicitly as a binary target
within a supervised training process (Kingma, D. P., Rezende,
D. J., Mohamed, S., and Welling, M., 2014).

2.2.5. Confidence Index

To close the design of an industrial system, indicating the
amount of trust in the system’s outcome is useful for the
consumer of this information. This goal is related to the esti-
mation of the uncertainty in the given solution. In this paper,
the smoothness of the probabilistic anomaly detection func-
tion pA is exploited as follows: the Confidence Index (CI) is
ultimately described by the rate of its change. This inherently
implies that the transition zones are unstable and uncertain,
while the plateaus are stable and certain. Given that the detec-
tion function depends on the distributed representation of the
bidimensional manifold z (that is locally Euclidean), the mag-
nitude of its vector derivative r = (@/@z1, @/@z2) is what
is taken for reference to indicate confidence in the prediction,
see Eq. (3). Finally, a unitary bound on the resulting CI is
introduced for normalized advisory purposes.
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CI(z) = 1.0 � min(krpA(z)k, 1.0) (3)

2.3. Performance Evaluation

In most real-world settings, the probability of an anomaly is
expected to be only slightly greater than zero (Wu, R., and
Keogh, E., 2021). In this sense, the purpose of this section is
to validate that the proposed probabilistic approach effectively
models the degradation of the rolling stock using nominal
subsystem events. As a result, the probability of Anomaly
must be strictly higher for the degraded condition than for the
Normal (i.e., regular) condition. To do so, a balanced sample
of validation data is obtained after the discrimination deter-
mined by the amount of reconstruction error, see Section 2.2.3.
10% of the anomalous instances are included in this hold-out
validation sample, which amounts to 120 examples in total.

The key performance indicators for this evaluation are driven
by the probability of Anomaly pA for both the Normal and the
Anomaly evaluation sample. Gaussianity in the distributions
is assumed for statistical convenience, because the probability
is a bounded quantity between 0 and 1. Also, the customary
minimum of 30 instances to reliably estimate the two statisti-
cal moments of this distribution type (i.e., the mean and the
variance) are guaranteed in the evaluation sample (Lejeune,
M., 2010). The significance of their mean average differences
is determined by the Student’s t-test (Gosset, W. S., 1908).
Further classification evaluation can be easily attained by in-
troducing a threshold to discretize the probabilistic decision,
which may also help to manage the potential reject option.
The specific value of this threshold is typically set at 0.5, i.e.,
in the middle of its range. The Precision P and Recall R
measures that succeed consider the impact of False Positive
FP and False Negative FN errors respectively with regards
to the True Positive TP successes, which are all to be found
in the confusion matrix, see Eq. (4).

P =
TP

TP + FP
R =

TP

TP + FN
(4)

Finally, the limitations of the proposed VAE-based Anomaly
Detection approach define the epistemic uncertainty in the
model. To determine the range of their impact on the di-
agnosis performance, the following evaluation environments
are considered (for practical experimental purposes, only the
subsystems that generate most of the events are taken into
consideration in this work):

• Locomotion: Traction + Brake

• Indoors: Heating, Ventilation, and Air Conditioning
(HVAC) + Doors

• Bogie: Tilting System + Wheel Slip Protection (WSP)

• Energy: Transformer (Transf.) + Auxiliary Converter
(Aux. Conv.)

Figure 10. Histogram of the Binary Cross Entropy (BCE)
Reconstruction Error along with the 99th percentile threshold.
The plot roughly matches the expected distribution of this
Loss, see Figure 7(a).

3. RESULTS

This section presents the results obtained with the proposed
Anomaly Detection approach based on operational subsystem
event data. Figure 10 shows an example of the the distribution
of degradation provided by the histogram of the Reconstruc-
tion Error/Loss. The mass of this distribution is largely skewed
toward the lower end, and it decays exponentially as the in-
stances become increasingly anomalous (this is the expected
behavior at the fleet level). A statistical threshold over the 99th
percentile is used to separate the Normal from the Anomaly
conditions. This criterion works well in the real world to spot
actual anomalies (Rodriguez Garcia, G., Michau, G., Ducoffe,
M., Sen Gupta, J., and Fink, O., 2021). Moreover, on this
distribution there seem to be two modes of behavior, a small
one that aligns with the zero origin, and a large one that is
somewhat shifted. This may be associated with the different
regimes of the trains, e.g., low-speed maneuvering close to the
depot/station (i.e., the low volume of records) and high-speed
intercity transit (i.e., the majority of the records).

Delving deep into the internal operation of the system, Fig-
ure 11 shows the tessellation of the bidimensional latent man-
ifold. In this hazard map, the decision boundary (i.e., pA =
0.5) wraps the instances that are deemed to be Normal, and
leaves out the ones that belong to the Anomaly category or
the synthetic outliers. Additionally, Figure 12 displays the
confidence in the diagnostic, which essentially depicts the
silhouette of the Normal region. As expected, the transition
zone is the most uncertain point.

Finally, Table 2 shows the performance of the Anomaly Detec-
tion approach for each of the evaluation environments. In all
cases, the average probability of abnormality for the Anomaly
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Figure 11. Tessellation of the latent manifold on the learned
bidimensional embedding z = (z1, z2). The probabilistic
anomaly decision boundary is shown at pA(z) = 0.5, which
is the random guess on a dichotomic classification problem.
Note that while the latent space is continuous, the evaluation
points are necessarily discrete, and a visually dense grid has
been used here to display the Normal closed region. While
a continuous function approximating this boundary is likely
to be faithful to reality, only the spots that have been actually
evaluated are represented. The plot matches the expected
distribution of this embedded space, see Figure 7(b).

condition is significantly greater than for the Normal regu-
lar case. The resulting range of classification performance
indicators lies around 80%, which is similar to a historical
baseline obtained on comparable data (Sammouri, W., Côme,
E., Oukhellou, L., Aknin, P., and Fonlladosa, C.-E., 2014).
See Figure 13 for the impact of the decision criterion on the
types of error displayed by the system. A smaller threshold
value drives the system toward conservatism (i.e., high Recall
at the expense of false alarms), while a greater value yields
an eager behavior (i.e., high Precision at the risk of missing a
failure).

4. DISCUSSION

This section addresses some typical qualms about time-series
based anomaly detection, and provides insights into its inter-
pretability from a causal perspective.

4.1. Reliability

Conventional performance indicators for anomaly detection
methods based on time-series data can sometimes be mislead-
ing (Wu, R., and Keogh, E., 2021). This happens, for example,
when the signals are so trivial that a single descriptive statistic
such as the mean or the standard deviation suffices to explain
them, or where the anomalies are directly found at the end
of the data sequence (e.g., on run-to-failure tests). None of
these situations apply to the scenario tackled in this work. In

Figure 12. Confidence Index shown on the latent manifold
related to Figure 11.

Figure 13. Precision and Recall curves driven by the sensitivity
of the Decision Threshold. Accuracy is also shown here only
for reference as the total rate of correct classifications.

hindsight, though, simplifications to the proposed approach
could now be found, but these seem unlikely to be have been
devised initially with the data only.

Perhaps one aspect worth discussing here is the noise in the la-
bels, which is a pervasive problem in the field because manual
expert-labeling of each instance at a large scale is not feasi-
ble (Kim, S., Choi, K., Choi, H.-S., Lee, B., and Yoon, S.,
2022). This work, albeit framed in an unsupervised learning
setting, relies on the signal reconstruction error as an imperfect
surrogate for the ground truth, which is used to estimate the
probability of Anomaly with the cross-entropy loss. Here, the
99th percentile loss drives this discriminative labeling crite-
rion, motivated by its reported success to identify anomalies
in the real world (Rodriguez Garcia, G., Michau, G., Ducoffe,
M., Sen Gupta, J., and Fink, O., 2021). However, if this high
value is reduced, the detection results are likely to be differ-
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Table 2. Detection performance driven by the probability of Anomaly, that is applied to the Normal (N) and Anomaly (A)
validation instances, taking into account their environments. Statistical mean µ and standard deviation � are computed, along
with the p-value of the significance t-test, and the Precision/Recall values at the decision boundary of pA = 0.5.

Environment pA(N)[µ/�] pA(A)[µ/�] p-value Precision Recall
Locomotion 0.18/0.19 0.78/0.25 6e-28 0.92 0.83
Indoors 0.21/0.29 0.70/0.28 1e-15 0.82 0.71
Bogie 0.39/0.18 0.66/0.25 7e-10 0.72 0.60
Energy 0.23/0.20 0.76/0.34 7e-18 0.91 0.72

ent, perhaps affecting the capacity of the system to deal with
instances increasingly similar to regular data.

In such a hybrid learning environment, if the training data
is “corrupted” with this pseudo-label, deep models such as
the VAE tend to overfit the noise, thereby achieving poor
generalization performance (Feng, L., Shu, S., Lin, Z., Lv, F.,
Li, L., and An, B., 2020). This effect can be observed as a
condition overlap in the latent space, see Figure 11, although
this region also shows a lower Confidence Index, see Figure 12.
Moreover, this Bernoulli-distributed error makes it difficult
to identify out-of-distribution instances when there are lots
of zeroes in the data (Yong, B. X., Pearce, T., and Brintrup,
A., 2020), as is the case with the sparse subsystem events, see
Figures 8 and 9. Nevertheless, when the ReLU is the only
non-linearity in the system (check Table 1), the loss curvature
is immune to class-dependent label noise (Patrini, G., Rozza,
A., Menon, A., Nock, R., and Qu, L., 2017), which increases
the confidence in the proposed approach.

4.2. Causal Explainability

Section 2.1 briefly described the blended braking system and
the impact that one subsystem has on another, i.e., Brake on
Traction. The Locomotion environment is very illustrative and
further interesting insights may be extracted. This section is
dedicated to providing such explanations, especially form the
perspective of the inferred causality (Zaman, N., Apostolou,
E., Li, Y., and Oister, K., 2022).

Causal inference is here motivated by the Kullback-Leibler
divergence, which is used in the objective function of the
VAE, see Section 2.2.2. It turns out that this value is a suit-
able measure of causal influence (Janzing, D., Balduzzi, D.,
Grosse-Wentrup, M., and Schölkopf, B., 2013). Therefore, the
question naturally arises: has the VAE automatically learned
any cause-effect relationships?

4.2.1. Graphical Causal Structure

In this work each dimension of the latent space is assumed
to be an independent Gaussian, see Section 2.2.2 for further
details. This design choice creates a disentangled representa-
tion that is not necessarily causal, it has been introduced only
to allow a more complex joint distribution to be constructed
from simpler components (Bishop, C. M., 2006). To progress

toward a semantically interpretable system, causally disentan-
gled latent variables are needed. These can in fact be obtained
from VAE models using an embedded layer to transform inde-
pendent exogenous factors (i.e., the root causes) into causal
endogenous ones (i.e., their effects) that correspond to causally
related concepts in the data (Yang, M., Liu, F., Chen, Z., Shen,
X., Hao, J., and Wang, J., 2020). However, the data must
already contain sample-wise causal labels to learn this richer
representation. In the absence of such cues, this section uses
a Causal Discovery approach to create a potential graphical
description of the inherent causal structure.

Considering that the available event subsystem data can be
framed as a multivariate time-series of binary variables, causal-
ity is expected to be observed as the precedence of events. To
capture their causal links, the Peter-Clark (PC) algorithm is
proposed (Spirtes, P., Glymour, C., and Scheines, R., 2001).
PC is a causal network learning algorithm that copes well
with high dimensionality and can often also identify the di-
rection of contemporaneous links (Runge, J., Bathiany, S.,
Bollt, E. et al., 2019). It is one of the oldest algorithms that
is consistent under i.i.d. sampling assuming no latent con-
founders, i.e., all relevant variables need to be observed in the
data (Glymour, C., Zhang, K., and Spirtes, P., 2019). The PC
algorithm starts by building a fully-meshed graph with all the
variables, and then evaluates the strength of the associations
by testing their conditional independence using the time-series
data. Eventually, it removes those edges that display zero
partial correlation. Finally, it applies a series of heuristics to
orient the links that remain giving them a causal direction, and
the resulting graphical structure is provided.

In this analysis, the top 10 frequency-ranked events are con-
sidered, 5 for each subsystem in the Locomotion environment,
see Table 3. Event simultaneity is expected, especially in the
presence of anomalies. Figure 14 shows the generated causal
graphical structure.

Based on these results, the subsystem interrelation between the
Brake and the Traction is mostly evident, e.g., rheostat over
temperature (T1) is caused by a failure on the blended braking
system (B4 and B5) and on the fan of the heat exchanger
(T4). In some cases, though, these associations are not so
clear-cut. For example, the 5th Traction event (i.e., T5), which
specifically refers to a “Traction/Brake fault”, is not caused by
any of the most frequent Brake events according to the criteria

10
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Table 3. Description of the top-ranked subsystem events in the Locomotion environment.

Event Rank Traction (T) Brake (B)
1 Rheo Over Temperature Brake Supply Pressure High
2 Traction Boost Selected Parking Brake Applied Pressure Switch
3 Traction Eco Selected Main Line Pressure High
4 Heat Exchanger Fan Fault Application Error 1 (blending)
5 Traction/Brake Train Line Fault PWM Signal 2 Dyn Brake Out of range

Figure 14. Causal graph for the Locomotion environment, i.e.,
including the Traction (T) and Brake (B) subsystems. Node
name code: {Subsystem}{Rank}. See Table 3 for further
details. Arrows indicate event association from cause to effect.

of the PC Causal Discovery algorithm.

What is more, the graph shows some bidirected edges, e.g.,
among B1, B2, and B3. This is likely to indicate the presence
of an unobserved confounder, which reveals a limitation of
the PC approach: since its outcome is a Markov equivalence
class, there is likely to be another (possibly better) graphical
representation that explains the same data. In fact, direct PC
application is not advised for the time series case, despite its
apparently good results, and other more involved methods
using more powerful statistical tests with time lags should
be explored on top of it (Runge, J., Nowack, P., Kretschmer,
M., Flaxman, S., and Sejdinovic, D., 2019). Additionally,
the subject matter experts should elucidate these effects and
resolve the causal directionality conflict. However, the PC
algorithm serves well to make the point of the discussion, and
its result constitutes a solid basis for further research.

4.2.2. Sensitivity Analysis

In the context of this work, the sensitivity analysis of interest
determines how the probability of Anomaly is affected by
changes in the subsystem event data. This may help quantify
the maximum bias that is reasonably expected for unmeasured
confounding (Hernán, M. A., and Robins, J. M., 2020), which

Figure 15. Sensitivity analysis on the Locomotion environ-
ment. See Table 3 for further details. Assuming Normality for
the day-level average distributions, bar heights indicate their
mean values, and whiskers indicate one standard deviation.
All the visually imperceptible bars actually have a negligible
probability in the order of 10�4.

was detected by the former Causal Discovery approach (also
note that the VAE model implicitly assumed that the events
are independent). Here, a time-averaged analysis at the day
level of the top-ranking Locomotion events is performed, see
Figure 15.

This sensitivity study shows that the impact of the Traction
is barely noticeable compared to the impact of the Brake,
especially regarding its three most frequent events, which are
also the ones subject to an unobserved confounder. Taking
all this extracted information into account, it could be stated
that whenever an anomalous situation occurs and a Traction
event is generated, the actual root cause is likely to be found
on the Brake. However, causality at the model level cannot be
extrapolated to the real world (Molnar, C., 2019). It is a global
interpretation of the available observational (i.e., ambiguous)
data. Unless further expert criteria are additionally considered,
these results may ultimately be driven by correlation, as this
point cannot yet be fully rejected. The contrapositive argument
that no-correlation implies no-causation could explain some of
these results, especially for the 4th and 5th event ranks, which
display a null risk of Anomaly. In the end, both correlation
and convolution are linear shift-invariant operators (Szeliski,
R., 2022), and since the latter defines the structure of the VAE,
it could also help elucidate this behavior.
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5. CONCLUSION

The strategy to detect anomalies using only operational data
through a Hierarchical Variational Autoencoder has provided
good results on par with previous experience. Moreover, the
fine-grained probabilistic diagnosis has enabled 1) tackling
the gradual degradation process that is observed at the fleet
level, 2) building interpretable visual insights through hazard
maps, and 3) assessing the confidence in the predictions.

Although the focus of the paper is on subsystem event streams
as a challenging signal source, the method can be readily
transferred to other domains (including other types of trains)
using parametric data typically used in PHM: the convolutional
structure can be directly applied to vibration, current, pictures,
etc. What is more, all these environments may be ultimately
merged into an ensemble towards a complete holistic solution
where, for instance, the events of the Brake subsystem could
be complemented with the shudder of a brake disk (e.g., from
an accelerometer) and the thickness of the brake pads (e.g.,
from a camera).

This work has relied mainly on the management of random
noise as a means to increase the robustness of the solution.
However, interesting improvement directions may be devised
when considering alternative loss functions in the VAE that
are robust to outliers such as the Tsallis entropy (Sârbu, S.,
and Malagò, L., 2019), the coupled entropy (Cao, S., Li,
J., Nelson, K.P., and Kon, M.A., 2022), the tamed cross-
entropy (Martinez, M., and Stiefelhagen, R., 2018), and the
hyperbolic cosine loss (Chen, P., Chen, G., and Zhang, S.,
2019).

Moreover, this work has focused on providing a probabilistic
function for the degradation of the assets, and the confidence
in its outcome has been resolved using the magnitude of its
gradient. Perhaps it could be more reliable to quantify the
uncertainty (i.e., the variability) in the prediction using dropout
in the MLP or introducing some fluctuations in its input latent
representation, thus keeping a probabilistic description of the
confidence. This is regarded as interesting future work.

Finally, the representation of causality is also a topic that de-
serves further attention (Schölkopf, B., Locatello, F., Bauer,
S., Ke, N. R., Kalchbrenner, N., Goyal, A., and Bengio, Y.,
2021). The Discussion has already revealed some straightfor-
ward insights, but a deeper understanding is necessary to make
stronger conclusions. This paves the way for the consideration
of Deep Learning to directly manage the construction of a
Structural Causal Model from first principles (Zec̆ević, M.,
Dhami, D. S., Velic̆ković, P., and Kersting, K., 2021), and be
able to identify the cause-effect relationships that describe the
degradation processes in full detail.

ACKNOWLEDGMENT

We would like to show our gratitude to our colleagues Dr.
Jonathan Brown and Quentin Possamaı̈ for their insightful
comments which greatly improved the manuscript. The con-
tribution of Alexandre Trilla to this research was partially
supported by the Government of Catalonia (Generalitat de
Catalunya) Grant No. 2020 DI 54.

REFERENCES

Arias Chao, M., Adey, B. T., and Fink, O. (2019).
Knowledge-Induced Learning with Adaptive Sampling
Variational Autoencoders for Open Set Fault Diagnos-
tics. arXiv:1912.12502 [cs.LG], 1–21.

Biscione, V., and Bowers, J. S. (2021). Convolutional Neural
Networks Are Not Invariant to Translation, but They
Can Learn to Be. Journal of Machine Learning Re-
search, 22(229), 1–28.

Bishop, C. M. (Ed.). (2006). Pattern Recognition and Machine
Learning (Information Science and Statistics). Springer-
Verlag New York, Inc.

Bredon, G. E. (1995). Topology & Geometry. Springer-
Verlag.

Cao, S., Li, J., Nelson, K.P., and Kon, M.A. (2022). Coupled
VAE: Improved Accuracy and Robustness of a Varia-
tional Autoencoder. Entropy, 24(423), 1–25.

Chaman, A., and Dokmanic, I. (2021). Truly shift-invariant
convolutional neural networks. Proc. of the IEEE / CVF
Computer Vision and Pattern Recognition Conference,
3773–3783.

Chawla, N. V., and Bowyer, K. W. (2002). SMOTE: Syn-
thetic Minority Over-sampling Technique. Journal of
Artificial Intelligence Research, 16, 321–357.

Chen, P., Chen, G., and Zhang, S. (2019). Log Hyperbolic
Cosine Loss Improves Variational Auto-Encoder. Proc.
of the International Conference on Learning Represen-
tations, 1–15.

Dangut, M. D., Skaf, Z., and Jennions, I. (2020). Rare
Failure Prediction Using an Integrated Auto-encoder
and Bidirectional Gated Recurrent Unit Network. IFAC
PapersOnLine, 53(3), 276–282.

Doersch, C. (2016). Tutorial on Variational Autoencoders.
arXiv:1606.05908 [stat.ML], 1–23.

Du, M., Li, F., Zheng, G., and Srikumar, V. (2017). DeepLog:
Anomaly Detection and Diagnosis from System Logs
through Deep Learning. Proc. of the ACM Confer-
ence on Computer and Communications Security, 1285–
1298.

Duda, R. O., Hart, P. E., and Stork, D. G. (Ed.). (2001). Pattern
Classification. Wiley-Interscience.

Eid, A., Clerc, G., Mansouri, B., and Roux, S. (2021). A
Novel Deep Clustering Method and Indicator for Time
Series Soft Partitioning. Energies, 14(5530), 1–19.

12



INTERNATIONAL JOURNAL OF PROGNOSTICS AND HEALTH MANAGEMENT

Elattar, H. M., Elminir, H. K., and Riad, A. M. (2016). Prog-
nostics: a literature review. Complex & Intelligent Sys-
tems, 2(2), 125–154.

Erhan, D., Manzagol, P.-A., Bengio, Y., Bengio, S., and Vin-
cent, P. (2009). The Difficulty of Training Deep Archi-
tectures and the Effect of Unsupervised Pre-Training.
Proc. of the 12th International Conference on Artificial
Intelligence and Statistics, 153–160.

Farzad, A., and Gulliver, A. (2020). Unsupervised log message
anomaly detection. ICT Express, 6, 229–237.

Fefferman, C., Mitter, S., and Narayanan, H. (2016). Test-
ing the Manifold Hypothesis. Journal of the American
Mathematical Society, 29(4), 983–1049.

Feng, L., Shu, S., Lin, Z., Lv, F., Li, L., and An, B. (2020). Can
Cross Entropy Loss Be Robust to Label Noise? Proc.
of the 29th International Joint Conference on Artificial
Intelligence, 2206–2212.

Fink, O., Wang, Q., Svensén, M., Dersin, P., Lee, W.-J., and
Ducoffe, M. (2020). Potential, challenges and future
directions for deep learning in prognostics and health
management applications. Engineering Applications of
Artificial Intelligence, 92(103678), 1–15.

Forest, F., Lebbah, M., Azzag, H., and Lacaille, J. (2019).
Deep Embedded SOM: Joint Representation Learning
and Self-Organization. Proc. of the 27th European Sym-
posium on Artificial Neural Networks, 1–6.

Gelman, A. (2021). Reflections on Breiman’s Two Cultures
of Statistical Modeling. Observational Studies, 7(1),
95–98.

Glymour, C., Zhang, K., and Spirtes, P. (2019). Review of
Causal Discovery Methods Based on Graphical Models.
Frontiers in Genetics, 10(524), 1–15.

Gosset, W. S. (1908). The probable error of a mean.
Biometrika, 6(1), 1–25.

Hancock, J. T., and Khoshgoftaar, T. M. (2020). Survey on
categorical data for neural networks. Journal of Big
Data, 7(28), 1–41.

Hernán, M. A., and Robins, J. M. (2020). Causal Inference:
What If. Boca Raton: Chapman & Hall/CRC.

Hu, X., Eklund, N., and Goebel, K. (2007). A Data Fusion
Approach for Aircraft Engine Fault Diagnostics. Proc.
of ASME Turbo Expo, 1(GT2007-27941), 767–775.

Huang, B., Di, Y., Jin, C., and Lee, J. (2017). Review of
Data-driven Prognostics and Health Management Tech-
niques: Lessions Learned from PHM Data Challenge
Competitions. Proc. of the Conference of the Machine
Failure Prevention Technology Society, 1–17.

Huh, D. (2011). Synthetic Embedding-based Data Generation
Methods for Student Performance. arXiv:2101.00728
[cs.LG], 1–19.

Im, D. J., Ahn, S., Memisevic, R., and Bengio, Y. (2017).
Denoising criterion for variational auto-encoding frame-
work. Proc. of the 31st AAAI Conference on Artificial
Intelligence, 2059–2065.

ISO. (2003). Condition monitoring and diagnostics of ma-
chine systems: Data processing, communication and
presentation (Tech. Rep. No. 13374-1:2003). Interna-
tional Organization for Standardization.

Janzing, D., Balduzzi, D., Grosse-Wentrup, M., and Schölkopf,
B. (2013). Quantifying causal influences. The Annals
of Statistics, 41(5), 2324–2358.

Kadra, A., Lindauer, M., Hutter, F., and Grabocka, J. (2021).
Well-tuned Simple Nets Excel on Tabular Datasets. Proc.
of the 35th Conference on Neural Information Process-
ing Systems, 1–14.

Kanazawa, A., Sharma, A., and Jacobs, D. (2014). Locally
Scale-Invariant Convolutional Neural Networks. Proc.
of the Twenty-eighth Conference on Neural Information
Processing Systems: Deep Learning and Representation
Learning Workshop, 1–11.

Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y., Isola,
P., Maschinot, A., Liu, C., and Krishnan, D. (2020).
Supervised Contrastive Learning. Proc. of the 34th
Conference on Neural Information Processing Systems,
1–23.

Kim, S., Choi, K., Choi, H.-S., Lee, B., and Yoon, S. (2022).
Towards a Rigorous Evaluation of Time-series Anomaly
Detection. Proc. of the 36th AAAI Conference on Artifi-
cial Intelligence, 7194–7201.

Kingma, D. P., and Welling, M. (2019). An Introduction to
Variational Autoencoders. Foundations and Trends (R)
in Machine Learning, 1–89.

Kingma, D. P., Rezende, D. J., Mohamed, S., and Welling, M.
(2014). Semi-supervised learning with deep generative
models. Advances in Neural Information Processing
Systems, 4, 3581–3589.

Lai, G., Chang, W.-C., Yang, Y., and Liu, H. (2018). Modeling
Long- and Short-Term Temporal Patterns with Deep
Neural Networks. Proc. of the 41st International ACM
SIGIR Conference on Research and Development in
Information Retrieval, 1–11.

Lejeune, M. (2010). Statistique, La théorie et ses applications.
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CHAPTER 6

DISCUSSION AND CONCLUSIONS

The generation of consciousness through a nonlinear neural net that tries
to solve the binding problem to provide more effective computations strikes

me as unconvincing and almost insulting.
– James A. Anderson (1996)

THE implementation of predictive maintenance is part of a complex busi-
ness and corporate transformative process. In the foreseeable future,

predictive maintenance will be done in conjunction with some more tradi-
tional maintenance approaches (UITP, 2020).

The research work described in this dissertation has focused on proving
that the Deep Learning technology exhibits the features that make it suit-
able for implementing railway predictive maintenance solutions. Through
several studies and investigations, comprising different data characteristics
(e.g., nominal and parametric variables) and objectives (e.g., diagnosis and
prognosis), the main conclusion is that Deep Learning is an approach that is
consistent with other studies, and which adds value to the predictive main-
tenance products driven by its superior performance and flexibility. While
the specific developed solutions cannot be exactly replicated because the
data used was private, the complexity of the approaches and the details of
their descriptions were deemed to be sufficiently accurate to guarantee their
reproducibility in a similar setting. These characteristics would support the
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advice for other researchers in PHM (and possibly other fields and indus-
tries) to adopt Deep Learning for their applied industrial research.

Deep Learning (DL) has also pushed the frontiers of knowledge, and
new limitations have ensued. The following sections describe some of the
current weaknesses of Deep Learning, as well as some avenues of future
improvement. This chapter is organized as follows: Section 6.1 deals with
the topic of Interpretability and Explainable AI. Section 6.2 introduces the
process of decision making. Section 6.3 outlines some aspects of the in-
dustrialization of DL-based solutions. Section 6.4 introduces the science of
causality as an line of research to improve the limitations of DL. Section 6.5
discussess how the published work addresses the identified challenges and
opportunities, and Section 6.6 concludes the dissertation.

6.1 Interpretability and Explainability

Predictive maintenance applications are increasingly complex, with interac-
tions between many components. Black-box models such as the recent onesBLACK-BOX MODEL

based on Deep Learning are popular approaches due to their unprecedented
performance in predictive accuracy. However, the lack of model explain-
ability or interpretability may manifest itself in a lack of trust to addressEXPLAINABILITY

INTERPRETABILITY PHM problems.
The challenges of interpretable Machine Learning for PHM include:

the fact that explanation methods interpreting black-box models may show
black-box behavior themselves, the non-consistent use of terminology,
and the inclusion of domain knowledge (Vollert, S., Atzmueller, M., and
Theissler, A., 2021). One recent successful approach in PHM to shed light
into these hidden behaviors is the application of online rule learning algo-
rithms to explain when the black-box models predict rare events (Ribeiro,
R. P., Mastelini, S. M., Davari, N., Aminian, E., Veloso, B., and Gama, J.,
2023). Obviously, other more general approaches such as LIME (based on
local linear approximations) or SHAP (based on coalitional game theory)
may also be explored (Molnar, C., 2019).

Different approaches have been investigated in this research to shed
light on the internal behavior of the developed solutions. The most com-
mon technique has been the Sensitivity Analysis, which has been applied
on the input data (Trilla, A., Fernández, V., and Cabré, X., 2020; Trilla,
A., Mijatovic, N., and Vilasis-Cardona, X., 2023), on the model expressive-
ness (Trilla, A., Miralles, D., and Fernández, V., 2020), and on the interme-
diate probabilistic representations (Trilla, A., Bob-Manuel, J., Lamoureux,
B., and Vilasis-Cardona, X., 2021). Additionally, the learned preprocess-
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ing has been interpreted through the templates of the matched filters, and
its overall performance has also been tested against data corruption to bet-
ter understand its limitations (Trilla, A., Bob-Manuel, J., Lamoureux, B.,
and Vilasis-Cardona, X., 2021). Finally, the extraction of the structure that
binds the variables through their relationships has also been used to explain
the root causes of specific events (Trilla, A., Mijatovic, N., and Vilasis-
Cardona, X., 2023).

6.2 Decision Making

Many important problems involve making decisions under uncertainty, in-
cluding PHM. When designing automated decision-making systems or DECISION-MAKING

decision-support systems, it is important to account for the various sources
of uncertainty when making or recommending decisions (Kochenderfer, M. UNCERTAINTY

J., Wheeler, T. A., and Wray, K. H., 2022). Solutions for managing such
uncertainty may be based on a deep map between measurements and op-
timal operation performance scores (Rodriguez Garcia, G., Michau, G.,
Einstein, H. H., and Fink, O., 2021), and the exploitation of the predicted
Remaining Useful Life for optimizing business processes (Wesendrup, K.,
and Hellingrath, B., 2020). Overall, consensus over multiple indepen- CONSENSUS

dent solutions must be seeked: learning to combine different predictions
through an ensemble is a means to reduce the uncertainty when making de- ENSEMBLE

cisions (Gupta, N., Smith, J., Adlam, B., and Mariet, Z., 2022).
Such ensembles, which may also augment the input data with their spe-

cific context, have been explored extensively in this research as a means to CONTEXT

increase the robustness of the decisions that may be derived from the re-
sults obtained with the developed solutions (Trilla, A., Fernández, V., and
Cabré, X., 2020; Trilla, A., Mijatovic, N., and Vilasis-Cardona, X., 2022,
2023; Trilla, A., Bob-Manuel, J., Lamoureux, B., and Vilasis-Cardona, X.,
2021). Finally, the field of probability has been regarded as a key element
to deal with the uncertainty that is inevitably linked to typical unstructured
data such as images (Trilla, A., Bob-Manuel, J., Lamoureux, B., and Vilasis-
Cardona, X., 2021) and text (Trilla, A., Mijatovic, N., and Vilasis-Cardona,
X., 2022), but also with the sparseness of random events in time (Trilla, A.,
Mijatovic, N., and Vilasis-Cardona, X., 2023).

6.3 Industrialization

This section focuses on two main issues involved in the broad expansion
of Deep Learning solutions: their technical debt and their energy consump-
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tion. On the one hand, technical debt deals with the long term costs incurredTECHNICAL DEBT

by moving quickly in software engineering (Sculley, D., Holt, G., et al.,
2015). These include entanglement, hidden feedback loops, data dependen-
cies, configuration issues, changes in the external world, and a variety of
system-level anti-patterns. To counter this adverse effect, testing and mon-
itoring are two key considerations for ensuring the production-readiness of
Deep Learning systems, and also for reducing their technical debt (Breck,
E., Cai, S., Nielsen, E., Salib, M., and Sculley, D., 2017).

On the other hand, the computations required for Deep Learning re-
search have been doubling every few months, resulting in an estimated
300,000x increase from 2012 to 2018, and showing a surprisingly large
carbon footprint (Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O.,CARBON FOOTPRINT

2020). The massive computation required to obtain the impressive results
that Deep Learning has yielded is costly both financially, due to the price
of specialized hardware and electricity or cloud compute time, and to the
environment, as a result of the non-renewable energy used to fuel modern
tensor processing hardware (Strubell, E., Ganesh, A., and McCallum, A.,
2020). As a result, efficiency is a novel criterion that is being increasingly
considered in the evaluation of these solutions.

This doctoral research has specifically tackled the impact of energy con-
sumption through reduced data transmission using neural data compres-
sion (Trilla, A., Miralles, D., and Fernández, V., 2020). This approach
has been deployed on an Industrial Internet of Things solution that cap-
tures vibration degradation patterns. Finally, reporting the details of a cloud
implementation in Trilla, A., Bob-Manuel, J., Lamoureux, B., and Vilasis-
Cardona, X. (2021) was positively regarded by the journal reviewers that
helped improve the publication. This is considered as a step forward in the
reduction of technical debt.

6.4 Causal Inference

Deep Learning has succeeded primarily by showing that certain questions
or tasks that were thought to be difficult were in fact not (Pearl, J., and
Mackenzie, D., 2019). Deep Learning and other modern data mining tools
are now placed on the bottom rung of the Ladder of Causation, i.e., the as-
sociational layer (Goldberg, L., 2019). More involved reasoning strategies,ASSOCIATIONAL

such as the interventional and counterfactual approaches, can provide finerINTERVENTIONAL
COUNTERFACTUAL insights into the data. However, they also need explicit assumptions on the

processes that generated the data. In this sense, Deep Learning and Causal
Models have recently found a sweet spot to enrich one another (Zec̆ević, M.,CAUSAL MODEL
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Dhami, D. S., Velic̆ković, P., and Kersting, K., 2021; Xia, K., Lee, K.-Z.,
Bengio, Y., and Bareinboim, E., 2021). In fact, the concept of “Causal AI”
has just appeared in the Gartner’s hype cycle as one of the most promising
new technologies (Gartner, 2022).

In PHM, one of the specific diagnosis areas where Causal Inference
finds a good match is Root Cause Analysis (RCA). In general, the diagnostic ROOT CAUSE

capability of operational tech systems is supported by having subject matter
experts identify causes by the patterns in historical data sets (Apps, J., 2019).
This is again a case of observational data managed through associations,
and thus confusion persists by wrongly linking causality with correlation
for RCA (Salehi, R., and Duan, S., 2023). In railway maintenance, though,
an easy way to identify the root cause of an abnormal behavior is to swap
some parts of a system with a neighboring system and see if the problem
swaps too (Turgis, F., Audier, P., Nemoz, V., and Marion, R., 2022). This is
a clear example of how actions, or interventions, are used to discover causal
implications.

RCA requires reliable, explainable and understandable models such
as Bayesian Networks (BN) for performing tasks like condition predic- BAYESIAN NETWORK

tion (Pourret, O., 2008). BN can also be learned with incomplete data and in
a supervised or unsupervised way, which is very useful because the collec-
tion of labeled data is costly and sometimes impossible in PHM (Monvoisin,
M., Leray, P., and Ritou, M., 2021). Furthermore, BN can also model the
uncertainty in the parameters with a distribution, which can be useful to UNCERTAINTY

complement the assumptions made in the failure analyses (Mascherona, R.,
Bellani, L., Compare, M., Trucco, R., Zio, E., 2020).

The increasingly growing area of causality within AI circles has been
specifically addressed in this research. In Trilla, A., Mijatovic, N., and
Vilasis-Cardona, X. (2022), a distributed representation of linguistic fea-
tures and causality was developed for RCA purposes. A troubleshooting so-
lution was proposed which treated the text-based records as Bags of Words,
and modeled their causal entailment in the diagnosis direction while condi-
tioning on the common project context to adjust for any confounding factor.
Finally, causality was also adopted in Trilla, A., Mijatovic, N., and Vilasis-
Cardona, X. (2023), where the discovery of structure in a multivariate en-
vironment was introduced to enhance the interpretability and explainability
of the data.
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6.5 Updated Challenges and Opportunities

Section 3.1.3 summarized the main challenges and opportunities identified
in the Deep Learning literature, which can be taken for the current research
gaps in the technical arena. This section revisits them from the perspective
of the published works shown in Chapter 5, and tries to see how they helped
to move the PHM field forward. Table 6.1 charts the challenges and oppor-
tunities with the publications to provide a quick overview of the scope of
the covered research.

Regarding the original challenges and opportunities, Table 6.1 aggre-
gates Model Selection and Benchmarking, and Data Scarcity and Augmen-
tation, Industrial Data Characteristics and Data Analysis.

The contribution CP1, which developed a multivariate regression refine-
ment of pantograph carbon strip degradation in time considering the impact
of the season, addressed the different seasonal environments as distinct do-
mains, and evaluated their sensitivity. This solution was industrialized in a
monitoring product based on computer vision technologies.

The contribution CP2, which studied and bechmarked the compression
performance of mechanical vibration signals using different regularization
strategies, was industrialized in an edge computing IoT product.

The contribution JA1, which developed a minimum viable product for
wheel tread diagnosis, used image augmentations to train several classifica-
tion and regression models, and put a lot of emphasis on its robustness and
explainability to increase the confidence in its assessment.

The contribution JA2, which approached the acquisition of causal infor-
mation from text, leveraged different project environments, developed a fun-
damental word model for troubleshooting, and addressed its interpretability
through the resulting learned distributed representation.

The contribution JA3, which jointly tackled the detection and diagnosis
objectives using event signals, managed diverse system settings, exploited
several augmentation strategies, and focused on its interpretability through
different representation spaces, including a real-valued manifold and a dis-
crete graph.

The big gap in the chart is the lacking contribution on the Real-Time
Realization challenge. In all the works conducted in this research disser-
tation, keeping the solution in continuous improvement entails retraining
the models. Thus, performance drifts have to monitored externally, and the
relearning needs to be conducted periodically.



6.5. Updated Challenges and Opportunities 149

C
ha

lle
ng

e/
O

pp
or

tu
ni

ty
C

P1
(2

02
0)

C
P2

(2
02

0)
JA

1
(2

02
1)

JA
2

(2
02

2)
JA

3
(2

02
3)

C
ro

ss
-d

om
ai

n
Pr

ed
ic

tio
n

Se
as

on
al

ity
C

on
te

xt
(b

us
i-

ne
ss

,
sy

st
em

,
is

su
e)

In
te

rs
ub

sy
st

em
D

iv
er

si
ty

In
du

st
ri

al
D

at
a

Sc
ar

ci
ty

an
d

A
ug

m
en

ta
tio

n
A

ffi
ne

tr
an

sf
or

-
m

at
io

ns
an

d
ad

-
di

tiv
e

no
is

e

Tr
an

sl
at

io
n

(t
im

e-
sh

if
t)

an
d

Sy
n-

th
et

ic
M

in
or

ity
O

ve
rs

am
pl

in
g

Te
ch

ni
qu

e
M

od
el

Se
le

ct
io

n
an

d
B

en
ch

m
ar

ki
ng

R
eg

re
ss

io
n

E
n-

se
m

bl
e

R
eg

ul
ar

iz
ed

A
ut

oe
nc

od
er

s
C

la
ss

ifi
ca

tio
n

an
d

re
gr

es
si

on
st

re
am

s

Se
pa

ra
te

w
or

d
em

be
dd

in
g

an
d

la
ng

ua
ge

m
od

el

R
ec

on
st

ru
ct

io
n-

ba
se

d
de

te
ct

io
n

an
d

gr
ap

h
re

p-
re

se
nt

at
io

n
In

te
rp

re
ta

bi
lit

y
an

d
E

x-
pl

ai
na

bi
lit

y
Se

ns
iti

vi
ty

Fi
lte

r
an

al
ys

is
,

m
an

if
ol

d
pl

ot
,

se
ns

iti
vi

ty
,

in
pu

tc
or

ru
pt

io
n

ro
bu

st
ne

ss

O
nt

ol
og

y,
m

an
-

if
ol

d
pl

ot
M

an
if

ol
d

pl
ot

,
ca

us
al

gr
ap

h,
se

ns
iti

vi
ty

R
ea

l-
Ti

m
e

R
ea

liz
at

io
n

Ta
bl

e
6.

1
A

gg
re

ga
te

d
ch

al
le

ng
es

an
d

op
po

rt
un

iti
es

al
on

g
w

ith
th

e
C

on
fe

re
nc

e
Pa

pe
rs

(C
P)

an
d

Jo
ur

na
lA

rt
ic

le
s

(J
A

)t
ha

ta
dd

re
ss

ed
th

em
,

al
so

sh
ow

in
g

th
e

pu
bl

ic
at

io
n

ye
ar

s
in

br
ac

ke
ts

.



150 6. DISCUSSION AND CONCLUSIONS

6.5.1 Railway Fleet Planning

The vast majority of this dissertation has been focused on the tasks of detect-
ing anomalies and diagnosing the health condition of the assets. However,
for such advances to be transformed into value-added actions, the mainte-
nance planning of the fleet needs to be observed. The challenge for PHM is
that predictive maintenance may require very short-term schedule changes
which may also affect the operation of the trains.

In a railway network, predictive maintenance scheduling for trains aimsSCHEDULING

to maximize the system reliability and availability such that sufficient ca-
pacity for the passenger demand in each route of the network is satisfied.
In a liberalized railway market, where the business is split between the in-
frastructure, the rolling stock, and the operator (Glover, J., 2013), one of
the most interesting approaches to tackle this challenge is to model it as a
centralized game theory problem (Rokhforoz, P., and Fink, O., 2021). In
this setting, the central system seeks to maximize its reward, which it gets
from the price per passenger for each route, and to minimize the operation
and deterioration cost of the trains, which are composed of several wag-
ons that keep their degradation as private health information. To solve this
problem, the central system needs to design a mechanism that induces a
non-cooperative game among the wagon agents, the solution of which is
conceptualized by a Nash Equilibrium (Nash, J., 1951), which in turn re-
sults in the most effective maintenance schedule.

According to this formulation of the problem, the opportunity of PHM
to improve the planning of the fleet is introduced through the prognosis,PLANNING

specifically addressed as the estimation of the distribution of the Remain-
ing Useful Life. In this sense, contribution CP1 provides a point estimate
of the future degradation along with the uncertainty of the error (assuming
Normality), and contribution JA1 provides a confidence indicator and a clas-
sification label, which is translated into granting a grace period (up to one
week) for further testing on the shop floor.

Finally, it is to note that the conceptualization of railway planning as
a game theory problem introduced in Rokhforoz, P., and Fink, O. (2021)GAME THEORY

has interesting connections with the field of Causal Inference, especially re-
garding the canonical econometric model relating price and demand through
structural equations (Pearl, J., 2000).

6.5.2 Technical Language Processing in Retrospect

The 2022 NLP contribution JA2 has been the most controversial article
given the feedback received, which probably signals the novelty of that re-
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search. The intersection of predictive maintenance, language, and causality,
has not been easily received by the PHM community as a matter of fact. In
hindsight, the arguably unconvincing results are likely to be the result of the
fresh training of the models using the scarce data that characterizes a predic-
tive maintenance setting. Learning from that experience, now the problem
could alternatively be addressed through fine-tuning already-trained global
word embeddings and large language models, but in that case the intricate
essence of causality would not be learned directly from the entailment of
the text, which may raise some concerns.

To the best of our knowledge, the introduction of language process-
ing in PHM was first popularized when the National Institute of Stan-
dards and Technology created the Technical Language Processing Com-
munity of Interest1 in 2020. This group helped researchers in PHM and
language processing gravitate toward a common interest in this area. Con-
currently, the traditional community of Natural Language Processing (NLP)
and computational linguistics held the first workshop on Causal Inference
and NLP (Feder, A., Keith, K. A., et al., 2021), highlighting the challenge
of extracting linguistic features from text that also represent causal effects.

The contribution JA2 approached the application of NLP on PHM tack-
ling the causal challenge of root cause analysis troubleshooting through DL,
making use of a learned distributed linguistic representation of causality. To
this day, no other work is known to precede and to follow this line of re-
search. However, an interesting alternative focus is to appear two years
after JA2. Valcamonico, D., Baraldi, Zio, E., Decarli, L., Crivellari, A.,
and La Rosa, L. (2024) developed a more traditional (i.e., non-DL-based)
approach with a Bayesian Network that had an expert-driven deconfounded
causal structure and leveraged keyword spotting. Given that this approach
smartly avoids the issue of common causes that induce confounding in the
structure, the conditional probabilities computed with the model can be at-
tributed a causal meaning.

6.6 On a Final Note...

The applied research work conducted in this dissertation has tried to build
a convincing case for proving that the Deep Learning technology is suitable
for implementing railway predictive maintenance solutions. After the rig-
orous evaluation of the proposed methods compared to leading alternatives
over different data sets and problem scenarios, it can be concluded that Deep

1https://www.nist.gov/el/technical-language-processing-community-interest
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Learning adds value to several predictive maintenance products, driven by
its superior performance and flexibility.

Looking ahead, two of the areas where Deep Learning has been partic-
ularly successful, i.e., Computer Vision and Natural Language Processing,
are now being enhanced with causal reasoning technology to improve vi-
sual interpretations (Liu, Y., Wei, Y.-S., Yan, H., Li, G.-B., and Lin, L.,
2022; Zhang, K., Sun, Q., Zhao, C., and Tang, Y., 2023) and language mod-
els (Kıcıman, E., Ness, R., Sharma, A., and Tan, C., 2023; Jin, Z., Chen, Y.,
Leeb, F., Gresele, L., Kamal, O., Lyu, Z., Blin, K., Gonzalez, F., Kleiman-
Weiner, M., Sachan, M., and Schölkopf, B., 2023). Therefore, causality is
a clear promising field to be adopted to continue the pursuit of knowledge
acquisition in AI.
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Zec̆ević, M., Dhami, D. S., Velic̆ković, P., and Kersting, K. (2021). Relating
Graph Neural Networks to Structural Causal Models. arXiv:2109.04173
[cs.LG], pages 1–29.

Zhang, C., Bengio, S., Hardt, M., Recht, B., and Vinyals, O. (2017). Un-
derstanding deep learning requires rethinking generalization. Proc. of the
International Conference on Learning Representations, pages 1–15.

Zhang, K., Huang, W., Hou, X., Xu, J., Su, R., and Xu, H. (2021). A
Fault Diagnosis and Visualization Method for High-Speed Train Based
on Edge and Cloud Collaboration. Applied Sciences, 11(1251):1–16.

Zhang, K., Sun, Q., Zhao, C., and Tang, Y. (2023). Causal reasoning in
typical computer vision tasks. arXiv:2307.13992 [cs.CV], pages 1–17.

Zhang, L., Lin, J., Liu, B., Zhang, Z., Yan, X., and Wei, M. (2019). A
Review on Deep Learning Applications in Prognostics and Health Man-
agement. IEEE Access, 7:162415–162438.

Zhang, P., Yang, Z., Moraal, J., Dollevoet, R., Zoeteman, A., and Li, Z.
(2022). Laboratory investigation of effects of a friction modifier on
wheel-rail dynamic contact. Proc. of the World Congress on Railway
Research, pages 1–6.



176 Bibliography

Zhu, J., Nostrand, T., Spiegel, C., and Morton, B. (2014). Survey of Con-
dition Indicators for Condition Monitoring Systems. Proc. of the Annual
Conference of the Prognostics and Health Management Society, pages
1–13.

Zoph, B., and Le, Q. (2017). Neural Architecture Search with Reinforce-
ment Learning. Proc. of the International Conference on Learning Rep-
resentations, pages 1–16.



INDEX

accelerometer, 23, 25, 28
Adam optimizer, 40
adhesion, 22
Adversarial, 40
aging, 17
Alstom, 6
Architecture Search, 41
Artificial Intelligence, 3
associational, 146
attention, 39
Autoencoder, 35
Autonomous driving, 18
axle, 24

battery, 21
Bayesian Network, 147
bias-variance, 42
bidirectionality, 41
Black-box model, 144
braking, 24
business case, 4
business model, 13

carbon footprint, 146
carbon strip, 26
catenary, 26
Causal Model, 146
CO2, 21

compressor, 24
Computer Vision, 29
consensus, 145
context, 145
Convolutional, 37
cost-benefit, 16
counterfactual, 146
Cryptography, 20

data-driven, 33
decarbonizing, 21
decision-making, 17, 145
Deep Learning, 34
Denial-of-Service, 19
dense vector space, 39
detection, 43
diagnosis, 4, 43
digital twin, 33
distributed representation, 38
Double Descent, 42
Dropout, 37
dwell time, 18

edge computing, 28
electrification, 21
embedding, 36, 39
ensemble, 145
event data, 31



178 Index

explainability, 144

failure, 16
feature extraction, 37
friction, 22, 27

game theory, 150
generative model, 40
grease, 24

health management, 43
human resources, 17
hydrogen, 21
hypothesis, 8

impact, 14
Initialization, 37
innovation, 3
insights, 18
inspection, 14
Internet-of-Things, 28
interpretability, 144
interventional, 146

jobs, 17

knowledge distillation, 43

leakage, 24
local pattern, 37
loss function, 40
Lottery Ticket, 42

maintenance, 44
malware, 20
management, 47
mathematical analysis, 43
Mobility, 18
Multilayer Perceptron, 34

neural networks, 34
nominal variable, 31
normalizing, 40

operating condition, 19
optical, 22
overfitting, 37
overhaul, 20
overhead line, 27

pantograph, 26
parallelization, 42
passenger flow, 18
planning, 150
pre-training, 36
predictive maintenance, 4
prognosis, 4, 43
protection, 19

railway, 4
reconstruct, 36
Rectified, 37
recurrent, 39
reduction, 15
Reinforcement Learning, 39
reliability, 16, 27
Remote, 28
Residual, 40
reward, 39
Root Cause, 147
rules, 17

safety, 4, 30
scheduling, 150
security, 19
shortcut connection, 40
sliding contact, 26
supervised, 34
sustainable, 20

technical debt, 146
Technical Language, 31
temperature, 25
text mining, 30
threshold, 17
topic model, 31



Index 179

track, 23
training, 18
Transfer Learning, 41
Transformer, 41
transport, 3
travel pattern, 18

uncertainty, 145, 147
unsupervised, 34

value chain, 14
vanishing gradient, 37
Vibration, 25
vibration, 22, 24, 28

wear, 17
Wear rate, 22
wheel-rail, 21
work order, 31



180 Index


