| 
 | |||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
java.lang.Objectemolib.classifier.machinelearning.density.Gaussian
public class Gaussian
The Gaussian class models a given dataset with a univariate normal distribution.
This density is defined by two variables: the mean and the standard deviation/variance of the population. For data mining purposes, these parameters may be estimated with the Maximum Likelihood method. Its parameter MLE are the sample mean and the sample variance.
| Constructor Summary | |
|---|---|
| Gaussian()Main constructor of this density. | |
| Gaussian(float mean,
         float std)Constructor with parameters. | |
| Method Summary | |
|---|---|
|  float | getLikelihood(float feature)The likelihood probabitity given a feature vector. | 
|  float | getMean()Function to retrieve the mean of this distribution. | 
| Methods inherited from class java.lang.Object | 
|---|
| clone, equals, finalize, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait | 
| Constructor Detail | 
|---|
public Gaussian()
public Gaussian(float mean,
                float std)
mean - The mean.std - The standard deviation.| Method Detail | 
|---|
public float getMean()
public float getLikelihood(float feature)
ClassConditionalDensity
getLikelihood in interface ClassConditionalDensityfeature - The feature.
| 
 | |||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||