| 
 | |||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
java.lang.Objectemolib.util.proc.TextDataProcessor
emolib.classifier.Classifier
emolib.classifier.machinelearning.Logistic
public class Logistic
The Logistic class is a Multinomial Logistic Regression (MLR) classifier.
It is a probabilistic discriminative approach that fits a set of exponential functions via the Maximum A Posteriori estimation. MLR obeys the maximum entropy principle, therefore it does not make any further assumption beyond what is directly observed in the training data. Moreover, it makes no assumptions about the relationships among the features, and so might potentially be more effective when conditional independence assumptions are not met, also overcoming the sparseness problem.
The core implementation of this logistic regression is based on LingPipe. The same term weighting schemes as the ones used in the ARN-R are considered.
ARNReduced| Nested Class Summary | |
|---|---|
|  class | Logistic.VectorStatisticsInner class to compute vector statistics. | 
| Constructor Summary | |
|---|---|
| Logistic()Main constructor of this logistic regression classifier. | |
| Method Summary | |
|---|---|
|  java.lang.String | getCategory(FeatureBox inputFeatures)The function that decides the most appropriate emotional category. | 
|  void | load(java.lang.String path)Generic function to load a previously saved classifier. | 
| static void | main(java.lang.String[] args)Main method to test the LR classifier. | 
|  void | resetExamples()Method to reset the classifier and flush the training examples. | 
|  void | save(java.lang.String path)Generic method to save the fully fledged classifier into a given file path. | 
|  void | setChi2(boolean chi,
        int numF)Set the Chi square feature selection. | 
|  void | setCOF(boolean cof)Method to consider bigram frequencies. | 
|  void | setEmotionDims(boolean emodims)Method to consider emotion dimensions. | 
|  void | setIntercept(boolean intercept)Method to consider the intercept feature. | 
|  void | setMI(boolean mi,
      int numF)Set the Mutual Information feature selection. | 
|  void | setNegation(boolean neg)Method to consider negations. | 
|  void | setPOS(boolean pos)Method to consider POS tags. | 
|  void | setPrior(java.lang.String prior)Method to set the regression prior. | 
|  void | setStemming(boolean stems)Method to consider stems. | 
|  void | setSynonyms(boolean syns)Method to consider synonyms. | 
|  void | setTermWeighingMeasure(java.lang.String twm)Method to set the TW method. | 
|  void | setTF(boolean tf,
      int numF)Set the Term Frequency feature selection. | 
|  void | trainingProcedure()Training method based on the Stochastic Gradient Descent. | 
| Methods inherited from class emolib.classifier.Classifier | 
|---|
| applyClassification, getData, getListOfExampleCategories, getListOfExampleFeatures, initialize, inputTrainingExample, newProperties, register, train | 
| Methods inherited from class emolib.util.proc.TextDataProcessor | 
|---|
| flush, getName, getPredecessor, setPredecessor, toString | 
| Methods inherited from class java.lang.Object | 
|---|
| clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait | 
| Constructor Detail | 
|---|
public Logistic()
| Method Detail | 
|---|
public java.lang.String getCategory(FeatureBox inputFeatures)
Classifier
getCategory in class ClassifierinputFeatures - The input emotional features.
public void trainingProcedure()
trainingProcedure in class Classifier
public void setMI(boolean mi,
                  int numF)
mi - The Mutual Information flag.numF - The number of relevant features desired.
public void setChi2(boolean chi,
                    int numF)
chi - The Chi2 flag.numF - The number of relevant features desired.
public void setTF(boolean tf,
                  int numF)
tf - The Term Frequency flag.numF - The number of relevant features desired.public void setTermWeighingMeasure(java.lang.String twm)
twm - The TW method.public void setCOF(boolean cof)
cof - The COF flag.public void setPOS(boolean pos)
pos - The POS flag.public void setStemming(boolean stems)
stems - The stemming flag.public void setIntercept(boolean intercept)
intercept - The intercept flag.public void setSynonyms(boolean syns)
syns - The synonyms flag.public void setEmotionDims(boolean emodims)
emodims - The emotion dimensions flag.public void setNegation(boolean neg)
neg - The negation flag.public void setPrior(java.lang.String prior)
prior - The regression prior.public void save(java.lang.String path)
Classifier
save in class Classifierpath - The file path to save the classifier.public void load(java.lang.String path)
Classifier
load in class Classifierpath - The path of the file which contains the previously saved
 classifier.public void resetExamples()
Classifier
resetExamples in class Classifier
public static void main(java.lang.String[] args)
                 throws java.lang.Exception
java.lang.Exception| 
 | |||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||