| 
 | |||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||
java.lang.Objectemolib.util.proc.TextDataProcessor
emolib.classifier.Classifier
emolib.classifier.machinelearning.OrdinalLogReg
public class OrdinalLogReg
The OrdinalLogReg class is an Ordinal Logistic Regression classifier.
Its implementation is based on the theory appearing in the SPSS book (Zagumny, 2001), optimised with a Stochastic Gradient Descent procedure (Carpenter, 2008). The same term weighting schemes as the ones used in the ARN-R are considered.
 --
 (Zagumny, 2001) Zagumny, M., "The SPSS Book: A Student 
 Guide to the Statistical Package for the Social Sciences",
 Lincoln: iUniverse.com, Inc., ISBN: 978-0595189137
 (Carpenter, 2008) Carpenter, B., "Lazy Sparse Stochastic 
 Gradient Descent for Regularized Multinomial Logistic Regression", 
 2008.
 
ARNReduced| Constructor Summary | |
|---|---|
| OrdinalLogReg()Main constructor of this logistic regression classifier. | |
| Method Summary | |
|---|---|
|  java.lang.String | getCategory(FeatureBox inputFeatures)The function that decides the most appropriate emotional category. | 
|  void | load(java.lang.String path)Generic function to load a previously saved classifier. | 
|  void | resetExamples()Method to reset the classifier and flush the training examples. | 
|  void | save(java.lang.String path)Generic method to save the fully fledged classifier into a given file path. | 
|  void | setCOF(boolean cof)Method to consider bigram frequencies. | 
|  void | setEmotionDims(boolean emodims)Method to consider emotion dimensions. | 
|  void | setIntercept(boolean intercept)Method to consider the intercept feature. | 
|  void | setNegation(boolean neg)Method to consider negations. | 
|  void | setPOS(boolean pos)Method to consider POS tags. | 
|  void | setStemming(boolean stems)Method to consider stems. | 
|  void | setSynonyms(boolean syns)Method to consider synonyms. | 
|  void | setTermWeighingMeasure(java.lang.String twm)Method to set the TW method. | 
|  void | trainingProcedure()Training method based on the Stochastic Gradient Descent. | 
| Methods inherited from class emolib.classifier.Classifier | 
|---|
| applyClassification, getData, getListOfExampleCategories, getListOfExampleFeatures, initialize, inputTrainingExample, newProperties, register, train | 
| Methods inherited from class emolib.util.proc.TextDataProcessor | 
|---|
| flush, getName, getPredecessor, setPredecessor, toString | 
| Methods inherited from class java.lang.Object | 
|---|
| clone, equals, finalize, getClass, hashCode, notify, notifyAll, wait, wait, wait | 
| Constructor Detail | 
|---|
public OrdinalLogReg()
| Method Detail | 
|---|
public java.lang.String getCategory(FeatureBox inputFeatures)
Classifier
getCategory in class ClassifierinputFeatures - The input emotional features.
public void trainingProcedure()
trainingProcedure in class Classifierpublic void setTermWeighingMeasure(java.lang.String twm)
twm - The TW method.public void setCOF(boolean cof)
cof - The COF flag.public void setPOS(boolean pos)
pos - The POS flag.public void setStemming(boolean stems)
stems - The stemming flag.public void setIntercept(boolean intercept)
intercept - The intercept flag.public void setSynonyms(boolean syns)
syns - The synonyms flag.public void setEmotionDims(boolean emodims)
emodims - The emotion dimensions flag.public void setNegation(boolean neg)
neg - The negation flag.public void save(java.lang.String path)
Classifier
save in class Classifierpath - The file path to save the classifier.public void load(java.lang.String path)
Classifier
load in class Classifierpath - The path of the file which contains the previously saved
 classifier.public void resetExamples()
Classifier
resetExamples in class Classifier| 
 | |||||||||
| PREV CLASS NEXT CLASS | FRAMES NO FRAMES | ||||||||
| SUMMARY: NESTED | FIELD | CONSTR | METHOD | DETAIL: FIELD | CONSTR | METHOD | ||||||||